Math 116 Exam 2

November 9, 2017

Directions: WRITE YOUR NAME ON THIS TEST! Except where indicated, merely finding the answer to a problem is not enough to receive full credit; you must show how you arrived at that answer. Unless otherwise indicated, decimal approximations for a numerical answer accurate to 4 decimal places are acceptable.

1) a) (6 points) What are the rectangular (Cartesian) coordinates of the polar point $(4,-3 \pi / 2)$?
b) (10 points) Give two representations in polar coordinates for the rectangular point $(-2,-2)$.
2) a) (6 points) Find a parameterization for the Cartesian curve $x^{2}+y^{2}=16$. Your parameterization should capture the whole curve, not merely a portion of it.
b) (12 points) Find a Cartesian equation (i.e. one in x and y) for the parametric curve $\left\langle t^{2}+t, t^{2}-t\right\rangle$. As in part a), your equation should capture the whole curve.
3) (15 points) Determine a parametric equation for the tangent line to the parametric curve given by $f(t)=\left\langle(\ln (t))^{t}, \ln (2 t)-1\right\rangle$ at the point $(1, \ln (2))$.
4) Let $f(t)=\left\langle\frac{\sin ^{2}(t)}{2}, \frac{t+\sin (t) \cos (t)}{2}\right\rangle$.
a) (13 points) Set up an equation for the arclength of the graph of f from $t=\pi / 6$ to $t=\pi / 4$.
b) (12 points) Find the arclength of the portion of the curve described in part a).
5) Let $f(t)=\left\langle\ln (t), \sqrt{t^{2}-1}-\operatorname{arcsec}(t)\right\rangle$.
a) (14 points) Set up an equation for the surface area obtained by revolving the graph of f from $t=e$ to $t=e^{2}$ about the y-axis.
b) (12 points) Find the surface area of the portion of the curve described in part a).
