Math 116 Exam 2

March 23, 2011

Directions: WRITE YOUR NAME ON THIS EXAM! Except where indicated, merely finding the answer to a problem is not enough to receive full credit; you must show how you arrived at that answer. Unless indicated, DO NOT convert irrational numbers such as $\sqrt{3}$ or π into decimal approximations; just leave them as they are.

1) Find the sum of the series or show that it diverges.
a) $\sum_{n=2}^{\infty} \frac{(-10)^{n+1}}{2^{4 n}}$
b) $\sum_{n=1}^{\infty}\left(\frac{1}{\sqrt{n+2}}-\frac{1}{\sqrt{n+3}}\right)$ (Hint: partial sums.)
2) Determine whether the following series converge or diverge. CLEARLY STATE WHICH TEST YOU ARE USING!
a) $\sum_{n=5}^{\infty} \frac{\ln \left(n^{2 n}\right)}{(n+3)!}$
b) $\sum_{n=7}^{\infty} e^{\frac{1-n}{n}}$
c) $\sum_{n=1}^{\infty} \frac{5 n^{2}}{\sqrt{n^{3}+1}}$
3) Evaluate the integral $\int_{0}^{10} \frac{d x}{x^{2}-3 x-28}$.
4) Find the limit of the sequence or show that it diverges.
a) $\left\{\left(1-\frac{2}{n}\right)^{3 n}\right\}_{n=1}^{\infty}$
b) $\left\{\frac{3 n^{2}-\arctan (n!)}{n^{2}}\right\}_{n=4}^{\infty}$
