Math 116 Exam 2

March 15, 2012

Directions: WRITE YOUR NAME ON THIS EXAM! Except where indicated, merely finding the answer to a problem is not enough to receive full credit; you must show how you arrived at that answer. DO NOT convert irrational numbers such as $\sqrt{3}$ or π into decimal approximations; just leave them as they are.

1) Determine whether the following series converge or diverge. If they converge, find the sum.
a) $(10$ points $) \sum_{n=1}^{\infty}\left(\arctan \left(\frac{\pi}{4 n}\right)-\arctan \left(\frac{\pi}{4 n+4}\right)\right)$
b) (12 points) $\sum_{n=2}^{\infty} \frac{31^{n}}{6^{2 n+3}}$
2) (16 points) Evaluate the integral $\int_{-1}^{9} \frac{x}{x^{2}+6 x-16} d x$.
3) Find the limit of the sequence or show that it diverges.
a) (10 points) $\left(\frac{\ln \left((2 n)^{5}\right)}{\ln (2 n+1)+1}\right)_{n=1}^{\infty}$
b) (12 points) $\left(n \tan \left(\frac{11}{n}\right)\right)_{n=1}^{\infty}$
4) Determine whether the following series converge or diverge. CLEARLY STATE WHICH TEST YOU ARE USING!
a) $\left(8\right.$ points $\sum_{n=1}^{\infty}\left(\frac{8 n+3}{n+9}\right)^{1 / 3}$
b) (12 points) $\sum_{n=13}^{\infty} \frac{(-12)^{n}}{n!}$
c) $(10$ points $) \sum_{n=5}^{\infty} \frac{e^{n}}{e^{2 n}+1}$
