Name:

Math 116 Exam 2

February 23, 2023

Directions:

1. WRITE YOUR NAME ON THIS TEST!
2. Except where indicated, merely finding the answer to a problem is not enough to receive full credit; you must show how you arrived at that answer.
3. Unless otherwise indicated, DO NOT convert irrational numbers such as $\sqrt{3}$ or π into decimal approximations; just leave them as they are.
4. If you have a question, raise your hand or come up and ask me.
1) a) Is the following use of partial fractions correct? If not, how do you fix the set-up?

$$
\frac{2}{(6-s)^{2}\left(s^{2}+8\right)}=\frac{A}{6-s}+\frac{B}{6-s}+\frac{C}{s^{2}+8} .
$$

b) In order to evaluate $\int_{0}^{2} \sqrt{36-x^{2}} d x$, substitute $x=$ and $d x=$ \qquad -.
c) In order to integrate $e^{x} \cos (x)$, choose $u=$ \qquad and $d v=$ -.
2) Compute the partial fraction decomposition of $\frac{s^{2}+1}{s\left(s^{2}-4\right)}$.
3) Recall that the Laplace Transform of a function f is defined as

$$
\mathcal{L}\{f\}(w)=\int_{0}^{\infty} f(t) e^{-w t} d t
$$

Compute $\mathcal{L}\{f\}(7)$ if

$$
f(t)=(t+2)^{2}
$$

4) Find the value of the integral

$$
\int_{0}^{\ln (\sqrt{3})} \frac{e^{x}}{\sqrt{e^{2 x}+1}} d x
$$

