Name:

Math 116 Practice Exam 3

December 7, 2010

1) a) What are the rectangular (Cartesian) coordinates of the polar point $\left(-5, \frac{4 \pi}{3}\right)$?
b) What is a representation in polar coordinates of the rectangular point $(8,-8 \sqrt{3}) ?$
2) Find the equation of the tangent line to the parametric curve determined by $f(t)=\langle\sin (t), \csc (t)\rangle$ at the point $t=\frac{\pi}{6}$.
3) By eliminating the parameter, find a Cartesian equation, i.e. one in x and y, for the following parametric curves.
a) $\langle t+1, \ln (3 t)\rangle$
b) $\langle 3 \tan (t), 22 \sec (t)\rangle$
4) a) Set up an equation for the arclength of the parametric curve $f(t)=$ $\left\langle e^{3 t}+e^{-3 t}, 6 t-41\right\rangle$ from $t=\ln (2)$ to $t=\ln (5)$.
b) Find the arclength of the portion of the curve described in part a).
5) Find the area enclosed by one loop of the polar curve $r=\sin (3 \theta)$. Note the graph below.

6) Your goal is to find the area inside the polar curve $r=-\cos (\theta)$ but outside the inner loop of $r=2-3 \cos (\theta)$.
a) Shade the area you are interested in in the picture below.

b) Calculate the area.
