Name:

Math 116 Exam 3

December 9, 2010

1) By eliminating the parameter, find a Cartesian equation, i.e. one in x and y, for the following parametric curves.
a) (6 points) $\langle 9 t-5,-t+22\rangle$
b) (7 points) $\langle 7 \sin (t), 9 \cos (t)\rangle$
2) (15 points) Determine the equation of the tangent line to the parametric curve determined by $f(t)=\langle\ln (5 t), \tan (5 \pi t / 4)\rangle$ at the point $t=\frac{1}{5}$.
3) a) (7 points) Set up an equation for the arclength of the parametric curve $f(t)=\langle\cos (6 t)+6 \cos (t), \sin (6 t)+6 \sin (t)\rangle$ from $t=0$ to $t=\frac{\pi}{15}$.
b) (10 points) Find the arclength of the portion of the curve described in part a). Hint: $\cos (A-B)=\cos (A) \cos (B)+\sin (A) \sin (B)$.
4) Consider the power series $\sum_{n=3}^{\infty} \frac{(5 x-15)^{n}}{\sqrt{n-2}}$.
a) (3 points) What is the center of the series?
b) (12 points) Find the radius of convergence of the series.
5) Given that the radius of convergence of $\sum_{n=3}^{\infty} \frac{(5 x-15)^{n}}{\sqrt{n-2}}$ is $1 / 5$, find the interval of convergence.
