Name:

## Math 116 Exam 3

Directions: WRITE YOUR NAME ON THIS EXAM! Except where indicated, merely finding the answer to a problem is not enough to receive full credit; you must show how you arrived at that answer. Decimal approximations up to four decimal points are acceptable unless otherwise indicated.

1) (10 points, 2 points each) True/False. If the sentence is false, correct the error. No justification is necessary.
a) If $(r, \theta)$ is in polar coordinates, then in rectangular coordinates, the $y$-coordinate of $(r, \theta)$ is $y=r \cos (\theta)$.
b) If $x^{\prime}(t), y^{\prime}(t)$ are defined and continuous on $[a, b]$, then the surface area obtained by revolving the parametric curve $\langle x(t), y(t)\rangle$ about the $y$-axis from $t=a$ to $t=b$ is defined as $\int_{a}^{b} 2 \pi y(t) \sqrt{\left(y^{\prime}(t)\right)^{2}+\left(x^{\prime}(t)\right)^{2}} d t$.
c) Any function $y=f(x)$ may be represented as a parametric curve.
d) The area inside a polar curve $r=f(\theta)$ from $\theta=\theta_{0}$ to $\theta=\theta_{1}$ is given by $\int_{\theta_{0}}^{\theta_{1}}[f(\theta)]^{2} d \theta$.
e) The curves $f(t)=\langle\sin (t), \cos (t)\rangle$ and $g(t)=\langle-\cos (6 t), \sin (6 t)\rangle$ have the same graph.
2) a) (6 points) What are the rectangular (Cartesian) coordinates of the polar point $\left(21,-\frac{4 \pi}{3}\right)$ ?
b) (6 points) What is a representation in polar coordinates of the rectangular point $(0,-21)$ ?
3) (15 points) Determine the equation of the tangent line to the parametric curve given by $f(t)=\left\langle\arctan (7 t), 8^{14 t}\right\rangle$ at the point $t=1 / 7$.
4) Consider the region in the 1st quadrant inside the inner loop of the curve $r=1 / 2+\cos (\theta)$. See the graph below.

a) (3 points) Shade the indicated region.
b) (6 points) Find the $\theta$ values determining this region.
c) (13 points) Find the area of the region.
5) Let $f(t)=\langle\sin (\pi \sin (t)), \cos (\pi \sin (t))\rangle$.
a) (8 points) Set up an equation for the arclength of the graph of $f$ from $t=0$ to $t=\pi / 6$
b) (13 points) Find the arclength of the portion of the curve described in part a).
6) Let $f(x)=x^{2}+12$.
a) (10 points) Set up an integral that represents the surface area obtained by revolving the graph of $f$ from $x=1$ to $x=2$ about the $y$-axis.
b) (10 points) Determine the surface area obtained by revolving the graph of $f$ from $x=1$ to $x=2$ about the $y$-axis.

BONUS: (10 points) Suppose $f$ is a real-valued function and $f^{\prime}$ is continuous on $[a, \infty)$. Show that for any such $f$, if we define $g(s)$ to be the arclength of the graph of $f$ from $x=a$ to $x=s(a \leq s)$, then $g$ is invertible.

