Name:

Math 116 Exam 3

Directions: WRITE YOUR NAME ON THIS EXAM! Except where indicated, merely finding the answer to a problem is not enough to receive full credit; you must show how you arrived at that answer. Decimal approximations up to four decimal points are acceptable unless otherwise indicated.

1) a) (3 points) Parameterize a generic function $y=f(x)$.
b) (2 points) Is there more than one polar representation for a given point (x, y) in Cartesian coordinates? If so, how many different representations are there?
c) (4 points) Given a parametric function $f(t)=\langle x(t), y(t)\rangle$ that is differentiable at $t=2$, what does the quantity $y^{\prime}(2) / x^{\prime}(2)$ represent if $x^{\prime}(2) \neq 0$? What can you say if $x^{\prime}(2)=0$?
2) a) (6 points) What are the rectangular (Cartesian) coordinates of the polar point $\left(-3, \frac{7 \pi}{4}\right)$?
b) (10 points) Give two representations in polar coordinates for the rectangular point $(-3,-3 \sqrt{3})$
3) a) (22 points) Determine a parametric equation for the tangent line to the parametric curve given by $f(t)=\left\langle(2 t)^{t}, \arctan \left(e^{t-1}\right)\right\rangle$ at the point $(2, \pi / 4)$.
b) (2 points) What is the value of the slope of the tangent line from a)?
4) Recall that the area inside a polar curve $r=f(\theta)$ from $\theta=\theta_{0}$ to $\theta=\theta_{1}$ is given by

$$
A=\frac{1}{2} \int_{\theta_{0}}^{\theta_{1}}(f(\theta))^{2} d \theta
$$

a) (12 points) Use this formula to compute the area inside $r=\sin (\theta)$ from $\theta=0$ to $\theta=\pi$.
b) (13 points) Find an equation in Cartesian coordinates for $r=\sin (\theta)$. Use this to confirm that the area from part a) is $\pi / 4$.
5) Let $f(t)=\left\langle t^{2} \sin (t), t^{2} \cos (t)\right\rangle$.
a) (14 points) Set up an equation for the arclength of the graph of f from $t=0$ to $t=\sqrt{5}$.
b) (12 points) Find the arclength of the portion of the curve described in part a).

