Math 116 Exam 3

April 13, 2011

Directions: WRITE YOUR NAME ON THIS EXAM! Except where indicated, merely finding the answer to a problem is not enough to receive full credit; you must show how you arrived at that answer. DO NOT convert irrational numbers such as $\sqrt{3}$ or π into decimal approximations; just leave them as they are.

1) By eliminating the parameter, find a Cartesian equation, i.e. one in x and y, for the following parametric curves.
a) (9 points) $x(t)=e^{2 t}+1, y(t)=e^{-4 t}$
b) (10 points) $x(t)=-5 \cos (\pi t), y(t)=11 \sin (\pi t)$
2) (15 points) Determine the equation of the tangent line to the parametric curve determined by $x(t)=\arctan (t), y(t)=\ln \left(\frac{t}{e \sqrt{3}}\right)$ at the point $t=\sqrt{3}$. SIMPLIFY ALL NUMBERS IN YOUR ANSWER!
3) Calculate the area inside the polar curve $r=\sqrt{\theta \sin (\theta)}$ from $\theta=0$ to $\theta=\pi$. See the picture below.

4) Consider the power series $\sum_{n=3}^{\infty} \frac{(2-x)^{n}}{\left(n^{1 / 8}\right) 7^{n}}$.
a) (3 points) What is the center of the series?
b) (12 points) Find the radius of convergence of the series.
5) (12 points) Given that the radius of convergence of $\sum_{n=3}^{\infty} \frac{(2-x)^{n}}{\left(n^{1 / 8}\right) 7^{n}}$ is 7 , find the interval of convergence.
6) (12 points) Determine the MacLaurin series for $f(x)=x^{2} \cos \left(-x^{3}\right)$.
