Math 116 Exam 3

April 12, 2012

Directions: WRITE YOUR NAME ON THIS EXAM! Except where indicated, merely finding the answer to a problem is not enough to receive full credit; you must show how you arrived at that answer. DO NOT convert irrational numbers such as $\sqrt{3}$ or π into decimal approximations; just leave them as they are.

1) By eliminating the parameter, find a Cartesian equation, i.e. one in x and y, for the following parametric curves.
a) (8 points) $x(t)=9 t+1, y(t)=-162 t^{2}-36 t$
b) (12 points) $x(t)=\sin (t), y(t)=1+\cos (2 t)$
2) (13 points) Determine the equation of the tangent line to the parametric curve given by $x(t)=\sqrt{t^{3}+1}, y(t)=\cot \left(\frac{\pi t}{8}\right)$ at the point $t=2$.

SIMPLIFY ALL NUMBERS IN YOUR ANSWER!
3) Consider the power series $\sum_{n=1}^{\infty} \frac{(24-4 x)^{n}}{n^{1 / 3}+7}$.
a) (3 points) What is the center of the series?
b) (12 points) Find the radius of convergence of the series.
4) (12 points) Given that the radius of convergence of $\sum_{n=1}^{\infty} \frac{(24-4 x)^{n}}{n^{1 / 3}+7}$ is $1 / 4$, find the interval of convergence.
5) (12 points) Find the MacLaurin series for $f(x)=\frac{5 x}{e^{x^{2}}}$.
6) Consider the region in the 1st quadrant outside the curve $r=1-\sin (\theta)$ but inside the curve $r=\cos (\theta)$. See the graph below.

a) (3 points) Shade the indicated region.
b) (9 points) Find the θ values for which the curves intersect if $0 \leq \theta \leq \frac{\pi}{2}$. Hint: a commonly-used identity may help.
c) (6 points) Set up BUT DO NOT EVALUATE an integral or integrals representing the area of the indicated region.

