Math 116 Final

December 21, 2016

Directions: WRITE YOUR NAME ON THIS EXAM! Except where indicated, merely finding the answer to a problem is not enough to receive full credit; you must show how you arrived at that answer. Decimal approximations to symbolic quanitities, accurate to four decimal places, are acceptable.

Now, if you had a choice on whether to take this exam, please indicate your understanding of the potential consequences by signing the statement below:

I understand that by taking this exam, I may lower my grade from what it was before the final.

Signed: \qquad

1) a) (6 points) What are the rectangular (Cartesian) coordinates of the polar point $(-18,3 \pi)$?
b) (6 points) What are two representations in polar coordinates of the rectangular (Cartesian) point $(3 \sqrt{3},-3)$?
2) (12 points) Recall that the area inside a polar curve $r=f(\theta)$ from $\theta=\theta_{0}$ to $\theta=\theta_{1}$ is given by

$$
A=\frac{1}{2} \int_{\theta_{0}}^{\theta_{1}}(f(\theta))^{2} d \theta
$$

Use this formula to compute the area inside $r=\cos (2 \theta)$ from $\theta=-\pi / 4$ to $\theta=3 \pi / 4$.
2) Consider the parametric curve defined by $f(t)=\left\langle t^{-t}, \ln (t / 2)\right\rangle$.
a) (3 points) Find the value of t for which $f(t)=\langle 1 / 4,0\rangle$.
b) (12 points) Determine the equation of the tangent line to the curve at the point $\langle 1 / 4,0\rangle$.
4) Let $f(t)=\left\langle\frac{4 t^{3 / 2}}{3}+1, \frac{t^{2}}{2}-t+6\right\rangle$.
a) (7 points) Set up an equation for the arclength of the graph of f from $t=2$ to $t=4$.
b) (10 points) Determine the arclength specified in part a).
5) Consider the power series $\sum_{n=1}^{\infty} \frac{(4-2 x)^{n}}{3 n+5}$.
a) (3 points) What is the center of the series?
b) (12 points) Find the radius of convergence of the series.
c) (2 points) Given that the radius of convergence is $1 / 2$, list two numbers other than the center for which the series converges.
6) a) (3 points) If f is continuous on $[0, \infty)$, define $\int_{0}^{\infty} f(t) d t$.
b) (7 points) State L'Hôpital's Rule.
c) (20 points) Compute the Laplace Transform of $f(t)=t+1$. Recall that the Laplace Transform of a function f is defined as

$$
\mathcal{L}\{f\}(w)=\int_{0}^{\infty} f(t) e^{-w t} d t
$$

7) a) (6 points) Define what it means to "add up" the terms of an infinite sequence of real numbers $\left(a_{n}\right)_{n=1}^{\infty}$.
b) (10 points) Either find the sum of

$$
\sum_{n=1}^{\infty}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)
$$

or show that the series diverges.
8) (15 points) Let $f(x)=\sum_{n=0}^{\infty} \frac{(-3)^{n} x^{n}}{n!}$. Show that f satisfies the differential equation

$$
y^{\prime \prime}+6 y^{\prime}+9 y=0
$$

9) A mixture of water and salt flows into a tank containing 500 L of water in which 4 kg of salt are initially dissolved. Let $x(t)$ denote the amount of salt in the tank at time t. Suppose the mixture flows into the tank at $10 \mathrm{~L} / \mathrm{min}$ and flows out at the same rate.
a) (2 points) Determine the initial condition on x.
b) (8 points) Find an equation for $\frac{d x}{d t}$ in terms of $x(t)$ if the mixture flowing in contains $.2 \mathrm{~kg} / \mathrm{L}$ of sugar.
c) (12 points) Find an explicit formula for the amount of salt $x(t)$ in the tank, i.e., solve for $x(t)$.
10) a) (11 points) Find the partial fraction decomposition of $\frac{x+2}{(x+1)\left(x^{2}+1\right)}$.
b) (8 points) Compute the value of $\int_{0}^{1} \frac{x+2}{(x+1)\left(x^{2}+1\right)} d x$.
11) a) (8 points) Find the sum of the series $\sum_{n=3}^{\infty} \frac{5^{n}}{2^{3 n}}$.
b) (10 points) Compute $\lim _{x \rightarrow \infty}\left(1-\frac{2016}{x}\right)^{x}$.
