Math 116 Final

April 25, 2011

Directions: WRITE YOUR NAME ON THIS EXAM! Except where indicated, merely finding the answer to a problem is not enough to receive full credit; you must show how you arrived at that answer. DO NOT convert irrational numbers such as $\sqrt{3}$ or π into decimal approximations; just leave them as they are.

1) a) (6 points) What are the rectangular (Cartesian) coordinates of the polar point $\left(17,-\frac{5 \pi}{3}\right)$?
b) (6 points) What is a representation in polar coordinates of the rectangular (Cartesian) point $(\sqrt{12}, 2)$?
2) Calculate the first derivative of the following functions:
a) (8 points) $f(x)=\arctan (\ln (x)), x>0$
b) (8 points) $g(x)=x e^{-x^{2}}$
3) Consider the parametric curve determined by

$$
f(t)=\left\langle t+\cos \left(\frac{\pi t}{2}\right), \ln (1-t)\right\rangle
$$

a) (2 points) Find the value of t for which $f(t)=\langle 1,0\rangle$
b) (10 points) Determine the equation of the tangent line to the curve at the point $(1,0)$. SIMPLIFY ALL NUMBERS IN YOUR ANSWER!
4) Solve the following non-calculus problem.

Desperate for outside capital, Fukushima Power, Inc. is offering you the chance to purchase $\$ 2000$ worth of "hot" stock in their company with a guarantee of 10% interest accrued, compounded continuously. Jealous of Fukushima's news coverage, BP gives you the opportunity to purchase $\$ 1500$ of their "crude" options, with a guaranteed 12% rate, again compounded continuously.
a) (8 points) After 8 years, which of the accounts would have the most money in it?
b) (4 points) After 8 years, which account gives a better return for your investment, reflected as a multiple of the principal?
5) Consider the power series $\sum_{n=3}^{\infty} \frac{n^{5 / 2}(7-3 x)^{n}}{4^{n}}$.
a) (4 points) What is the center of the series?
b) (12 points) Find the radius of convergence of the series.
6) (12 points) Given that the radius of convergence of $\sum_{n=3}^{\infty} \frac{n^{5 / 2}(7-3 x)^{n}}{4^{n}}$ is equal to $4 / 3$, determine the interval of convergence.
7) Determine whether the following series converge or diverge. CLEARLY STATE WHICH TEST YOU ARE USING.
a) (8 points) $\sum_{n=2}^{\infty} \frac{(-1)^{n} \ln (n)}{n^{9 / 11}}$
b) (10 points) $\sum_{n=2}^{\infty} \frac{1}{n^{2}+4}$
8) The following series converge. Find a sufficient number of terms to estimate the sum to within .02 . Be sure to justify your answer with calculations.
a) $(6$ points $) \sum_{n=2}^{\infty} \frac{(-1)^{n} \ln (n)}{n^{9 / 11}}$
b) (12 points) $\sum_{n=2}^{\infty} \frac{1}{n^{2}+4}$
9) Find the sum of the series or show that it diverges.
a) (12 points) $\sum_{n=3}^{\infty} \frac{13^{2 n+1}}{7^{3 n}}$
b) (14 points) $\sum_{n=1}^{\infty} \frac{1}{n^{2}+7 n+12}$ (Hint: two kinds of partials)
10) Calculate the following limits.
a) (10 points) $\lim _{x \rightarrow 0} \frac{x^{2}+x-\sin (x)}{1-\cos (6 x)}$
b) (10 points) $\lim _{n \rightarrow \infty}\left(1+\frac{10}{n}\right)^{n}$
11) Consider the region in the 1st quadrant inside the curve $r=\theta \cos (\theta)$. See the graph below.

a) (4 points) Find the θ values which determine the region.
c) (14 points) Calculate the area of the given region. (Hint: look at the fill-in-the-blank and remember what you were promised!)

