Announcements

1) HW \#6 due tomorrow, all Webwork. Practice Problems on Canvas.
2) office hours 11-12

Power Series
(Section 11.8)

Idea: introduce a variable into your series, whose power changes as n changes

Example 1:

$$
\begin{aligned}
& 1+x+x^{2}+x^{3}+\cdots \\
& =\sum_{n=0}^{\infty} x^{n}
\end{aligned}
$$

Sum of the series depends on x
$x=\frac{1}{2}$, sum is 2
$x=0$, sum is 1
$x=1$, sum diverges
$x=-1$, sum diverges

In general, we get

$$
\sum_{n=0}^{\infty} x^{n}= \begin{cases}\text { divergent, } & |x| \geq 1 \\ \frac{1}{1-x}, & |x|<1\end{cases}
$$

$Q:$ For which x does the series converge?

A: This is the focus of the rest of the class:

For which x does

$$
\sum_{n=0}^{\infty} a_{n} x^{n} \text { converge, }
$$

where $\left(a_{n}\right)_{n=1}^{\infty}$ is a sequence.

The Center
In general, $\sum_{n=0}^{\infty} a_{n} x^{n}$ converges at least for $x=0$. If we shift the scries and get

$$
\sum_{n=0}^{\infty} a_{n}(x-c)^{n} \text { for ca number }
$$

it converges at least for $x=c$.
The number c is called the center of the power.

Q: How do we tell if there are other points where the series converges?

A: The ratio test

The Ratio Test
(Section 11.1)

Modeled after the geometric series

- but there, the ratio between consecutive terms is constant.

The ratio test is for when the ratio isn't constant.

Ratio Test (Section 11.6)
Given a power series
$\sum_{n=0}^{\infty} a_{n}(x-c)^{n}$, divide the
$(n+1)$ st term by the n^{+n}.
Take absolute value of this quotient, then take the limit as $n \rightarrow \infty$. Call this limit L

1) $L>1$, series diverges
2) $L<1$, series converges
3) $L=1$, you know nothing.

Example 1: Consider $\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$
Determine where this series converges, ie., for what values of x.

Ratio test:
$n^{\text {th }}$ term: $\frac{x^{n}}{n l}$ $(n+1)$ st term: $\frac{x^{n+1}}{(n+1)!}$.
Divide $\frac{(n+1) s+}{n^{+n}}: \frac{\left(\frac{x^{n+1}}{(n+1)!}\right)}{\left(\frac{x^{n}}{n!}\right)}$

Divide $\frac{(n+1) s t}{n+n}: \frac{\left(\frac{x^{n+1}}{(n+1)!}\right)}{\left(\frac{x^{n}}{n!}\right)}$

$$
\begin{aligned}
& =\frac{x^{n+1}}{(n+1)!} \frac{n!}{x^{n}} \text { group live terns } \\
& =\frac{x^{n+1}}{x^{n}} \frac{n!}{(n+1)!} \\
& =\frac{x^{n} \cdot x}{x n} \frac{n!}{(n+1)!} \\
& =x \frac{n!}{(n+1) x!}=\frac{x}{n+1}
\end{aligned}
$$

Take absolute values

$$
\frac{|x|}{n+1}
$$

Take limit as $n \rightarrow \infty$
$\lim _{n \rightarrow \infty} \frac{|x|}{n+1}=0$ no matter what x is
$0<1$, so by the ratio test, $\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$ Converges for all values of x.

