Announcements

1) Quiz Thursday over $11.6+11.8$
2) Exam next Thursday

Radius and Interval of Convergence
Given a power series that is shifted

$$
f(x)=\sum_{n=0}^{\infty} a_{n}(x-c)^{n}
$$

the series can converge in one of three ways:

1) Only $x=c$
2) A finite interval centered at $x=c$
3) All real numbers

So the series converges in an interval called the interval of convergence

Half the length of the interval of convergence is called the radius of convergence.

The ratio test almost always can find the radius of convergence, but can miss out a bit on the interval in case 2 ).

Example 1: Find the radius of convergence of $\sum_{n=1}^{\infty} \frac{3^{n}(x-2)^{n}}{n+2}$
$n^{\text {th }}$ term: $\frac{3^{n}(x-2)^{n}}{n+2}$
$(n+1)^{\text {st }}$ term: $\frac{3^{n+1}(x-2)^{n+1}}{n+3}$

1) Divide $\frac{(n+1)^{s+}}{n^{+h}}=\frac{3^{n+1}(x-2)^{n+1}}{n+3} \frac{n+2}{3^{n}(x-2)^{n}}$
2) Collect like terms: $\frac{3^{n+1}}{3^{n}} \frac{(x-2)^{n+1}}{(x-2)^{n}} \frac{n+2}{n+3}$
3) Collect like terms: $\frac{3^{x+1}}{3^{n}} \frac{(x-2)^{\alpha+1}}{(x-2)^{\alpha}} \frac{n+2}{n+3}$

$$
=3(x-2) \frac{n+2}{n+3}
$$

3) Take absolute values

$$
\begin{aligned}
& \left|3(x-2) \frac{n+2}{n+3}\right| \\
= & \left.|3||x-2| \frac{n+2}{n+3} \right\rvert\, \\
= & 3|x-2| \frac{n+2}{n+3}
\end{aligned}
$$

4) Take limit as $n \rightarrow \infty$

$$
\lim _{n \rightarrow \infty} 3|x-2| \frac{n+2}{n+3}
$$

4) Take limit as $n \rightarrow \infty$

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} 3|x-2| \frac{n+2}{n+3} \\
= & 3|x-2| \underbrace{}_{n \rightarrow \infty} \frac{n+2}{n+3} \\
= & 3|x-2|
\end{aligned}
$$

5) Set less than one and solve

$$
\begin{aligned}
3|x-2| & <1 \\
|x-2| & <\frac{1}{3} \text { means } \\
-\frac{1}{3}<x-2 & <\frac{1}{3}
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{1}{3}<x-2<\frac{1}{3} \\
& +2 \\
& +2 \\
& \frac{5}{3}<x<\frac{7}{3}
\end{aligned}
$$

Ratio test says:

- series converges when $\frac{5}{3}<x<\frac{7}{3}$
- series diverges when $x<\frac{5}{3}$ or $x>\frac{7}{3}$
- when $x=\frac{5}{3}$ or $x=\frac{7}{3}$, the test tells you nothing

$$
\begin{aligned}
\text { Radius } & =\frac{1}{2}(\text { length of interval }) \\
& =\frac{1}{2} \cdot(2 / 3)=\frac{1}{3}
\end{aligned}
$$

Example 2: Find the radius of convergence for

$$
g(x)=\sum_{n=1}^{\infty}(2 n)!(x-6)^{n}
$$

Definitely converges at $x=6$ (center).
Ratio test
$n^{\text {th }}$ term: $(2 n)!(x-6)^{n}$
$(n+1)^{\text {st }}$ term: $(2(n+1))!(x-6)^{n+1}$

$$
=(2 n+2)!(x-6)^{n+1}
$$

1) Divide $(n+1)^{\text {st }}$ term by $n^{t h}$ tern:

$$
\frac{(2 n+2)!(x-6)^{n+1}}{(2 n)!(x-6)^{n}}
$$

2) Group like terns

$$
\begin{aligned}
& \frac{(2 n+2)!}{(2 n)!} \frac{(x-6)^{x+1}}{(x-6)^{\infty}} \\
= & \frac{(2 n+2)!}{(2 n)!}(x-6) \\
= & \frac{(2 n+2)(2 n+1)(2 n)!(x-6)}{(2 n)!} \\
= & (2 n+2)(2 n+1)(x-6)
\end{aligned}
$$

3) Take absolute values

$$
\begin{aligned}
& |(2 n+2)(2 n+1)(x-6)| \\
= & |2 n+2||2 n+1||x-6| \\
= & (2 n+2)(2 n+1)|x-6|
\end{aligned}
$$

4) Take limit as $n \rightarrow s$

$$
\lim _{n \rightarrow \infty}(2 n+2)(2 n+1)|x-6|=\infty
$$

except when $x=6$.
Then $(2 n+2)(2 n+1)(6-6)$

$$
=(2 n+2)(2 n+1) \cdot 0=0
$$

so the limit is zero.
5) Set less then one

But the limit is only
less than one if

$$
x=6 \text {. }
$$

Then the interval of convergence is just $x=6$.

$$
\begin{aligned}
\text { Radius } & =\frac{1}{2} \text { (length of interval) } \\
& =\frac{1}{2} \cdot 0=0 .
\end{aligned}
$$

$\frac{\text { Power Series Calculus }}{(\text { Section } 11.9)}$
We would like to use power series to solve differential equations.

To do that, we reed to know how to take derivatives!
Given $f(x)=\sum_{n=0}^{\infty} a_{n}(x-c)^{n}$
with nonzero radius of convergence,

$$
\begin{aligned}
& f(x)=a_{0}+a_{1}(x-c)+a_{2}(x-c)^{2}+a_{3}(x-c)^{3}+\cdots \\
& f^{\prime}(x)=0+a_{1}+a_{2} \cdot 2(x-c)+a_{3} \cdot 3(x-c)^{2}+\cdots
\end{aligned}
$$

Example 3: $\quad y^{\prime}=y$
Show $f(x)=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$ satisfies this equation.

$$
\begin{aligned}
f(x) & =1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\frac{x^{4}}{24}+\frac{x^{5}}{120}+\cdots \\
f^{\prime}(x) & =1+\frac{2 x}{2}+\frac{3 x^{2}}{6}+\frac{4 x^{3}}{24}+\frac{5 x^{4}}{120}+\cdots \\
& =1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\frac{x^{4}}{24}+\cdots \\
& =f(x)
\end{aligned}
$$

This says $f(x)=c e^{x}$ for some constant $C$. To find $C$, set $x=0$.

$$
1=f(0)=C c^{0}=C
$$

So $f(x)=e^{x}$

