Announcements

1) Exam Thursday

laglor and MacLaurin Series

(section 11.10)

for a given, infinitely differentiable function f at c=0, the Machaurin series for f is the power series $\sum_{n=0}^{\infty} \frac{\nu}{t_{(n)}(0)} x_{\nu}$ where f⁽ⁿ⁾(x) = nth derivative of f $\mathcal{L}_{(o)}(x) = f(x)$

Suppose I know

$$f(x) = \sum_{n=0}^{\infty} a_n x^n, \text{ nonzero radius of} \\ convergence$$

$$F(x) = a_0 + a_1 x + a_0 x^3 + a_3 x^3 + -$$

$$F(0) = a_0$$

$$f'(x) = a_1 + 2a_0 x + 3a_3 x^2 + 4a_0 x^3 + -$$

$$f'(0) = a_1$$

$$f''(x) = 2a_1 + 6a_3 x + 12a_0 x^3 + \cdots$$

$$f''(0) = 2a_2$$

$$F'''(x) = 6a_3 + 24a_0 x + \cdots$$

$$f'''(x) = 6a_3$$

Solving for the and ,

$$a_{0} = f(0) = \frac{f(0)}{0!}$$

 $a_{1} = \frac{f'(0)}{0!} = \frac{f'(0)}{0!}$
 $a_{2} = \frac{f''(0)}{0!} = \frac{f''(0)}{0!}$
 $a_{3} = \frac{f''(0)}{0!} = \frac{f'''(0)}{0!}$
 $a_{1} = \frac{f''(0)}{0!} = \frac{f'''(0)}{0!}$

What this calculation says:

If we can write f as a power series centered at (= D with nonzero radius of convergence, then the power series must be equal to the MacLaurin series of f.

Example 1: Check that

$$f(x) = \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{n}}{(-1)^{n} x^{n}}$$

Satisfier the differential equation

$$y = sin(x)$$
 also satisfies
this differential equation,
as does $y = cos(x)$.

In differential equations, you will
learn any solution to
$$y''+y=0$$

is of the form
 $y(x) = a \cos(x) + b \sin(x)$
where a, b are some numbers.
This means
 $\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!} = a \cos(x) + b \sin(x)$
 $n=0$
Find a and b !
Find a and b !
First, plug in $x=0$.

$$\int_{n=0}^{\infty} \frac{(-1)^{n} x^{2n}}{(2n)!} = \alpha \cos(x) + b \sin(x)$$

Find a and b
First, plug in x=0

$$I = \alpha \cos(0) + b \sin(b)$$

$$= \alpha$$

So $\alpha = 1$.
To find b, observe that
 $f(x) = f(-x)$ since all powers
in the series are even.

This says $f(\vec{\Delta}) = t(-\vec{\Delta}).$ Bu f(x) = (os(x) + bsin(x), so $b = (os(\underline{I}) + b sin(\underline{I}))$ $= \cos(-\frac{\pi}{2}) + b\sin(-\frac{\pi}{2})$ = -bSo b=-b, and b=0. Then $f(x) = \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2n}}{(2n)!} = \cos(x)$

By differentiating

$$COS(X) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}$$
, we get

$$Sin(x) = \frac{CA}{(-1)} \frac{(-1)^{n+1} 2n^{-1}}{(2n-1)!}$$

$$N = 1 \frac{(2n-1)!}{(2n-1)!}$$

$$= \sum_{n=0}^{\infty} \frac{(-1) x}{(2n+1)!}$$

$$2n - 1 = 2n - 2 + 1$$

= $2(n - 1) + 1$
m = $n - 1$

Taylor suries are of the
form
$$\int_{n=0}^{\infty} f^{(n)}(c) (x-c)^{n}$$
Where c might not be Zero.

Only do this when either f

of its derivatives are not

defined at c=0

(i.e. $ln(x), Jx$)