Announcements

1) Quiz Thursday over $10.1,10.2$
2) Exam next Thursday over

$$
10.1-10.4,8.1,8.2
$$

3) Halloween tomorrow costumes = candy

Recall : tangent lines to parametric curves

If $f(t)=\langle x(t), y(t)\rangle$, the equation of the tangent line to the graph of f at $t=t$. is

$$
\frac{y^{\prime}\left(t_{0}\right)}{x^{\prime}\left(t_{0}\right)}=\frac{y-y\left(t_{0}\right)}{x-x\left(t_{0}\right)}
$$

Example 1: Find the tangent line to $g(t)=\langle\arctan (t), \cos (\pi t)\rangle$ at the point $\left(\frac{\pi}{4},-1\right)$

To find tor determine the point as

$$
\begin{aligned}
& x\left(t_{0}\right)=\frac{\pi}{4}=\arctan \left(t_{0}\right) \\
& y\left(t_{0}\right)=-1=\cos \left(\pi t_{0}\right)
\end{aligned}
$$

Use $\arctan \left(t_{0}\right)=\frac{\pi}{4}$, take tangent of both sides.

$$
\begin{aligned}
\tan \left(\frac{\pi}{4}\right) & =\tan \left(\arctan \left(t_{0}\right)\right)=t_{6} \\
t_{0} & =1
\end{aligned}
$$

$$
t_{0}=1
$$

$$
\begin{aligned}
& x(t)=\arctan (t) \\
& y(t)=\cos (\pi t) \\
& x^{\prime}(t)=\frac{1}{1+t^{2}} \\
& y^{\prime}(t)=-\sin (\pi t) \cdot \pi \\
& x^{\prime}(1)=\frac{1}{1+1}=\frac{1}{2} \\
& y^{\prime}(1)=-\sin (\pi) \cdot \pi=0 \\
& x(1)=\frac{\pi}{4}, \quad y(1)=-1 \text { (given) }
\end{aligned}
$$

$$
\begin{aligned}
& x^{\prime}(1)=\frac{1}{1+1}=\frac{1}{2} \\
& y^{\prime}(1)=-\sin (\pi) \cdot \pi=0 \\
& x(1)=\frac{\pi}{4}, y(1)=-1 \text { (given) }
\end{aligned}
$$

Equation of line:

$$
\begin{aligned}
& \frac{y^{\prime}(1)}{x^{\prime}(1)}=\frac{y-y(1)}{x-x(1)} \\
& \frac{0}{\left(y_{2}\right)}=\frac{y+1}{x-\frac{\pi}{4}} \\
& y+1=0, \\
& y=-1 \quad \text { horizontal } \\
& \text { line }
\end{aligned}
$$

Vertical/Horizontal Tangents

- When $y^{\prime}\left(t_{0}\right)=0 \quad\left(\right.$ and $\left.x^{\prime}\left(t_{0}\right) \neq 0\right)$ the tangent line is horizontal.
- when $x^{\prime}\left(t_{0}\right)=0$ (and $\left.y^{\prime}\left(t_{0}\right) \neq 0\right)$, the tangent line is vertical.

Arclength
(Section 10.2)
Motivating example:
Find the length of $y=2 x+1$ from $x=1$ to $x=3$

Find the length of $y=2 x+1$ from $x=1$ to $x=3$

Picture

Use Pythagorean Theorem:

$$
\begin{aligned}
(\text { length })^{2} & =2^{2}+4^{2} \\
& =20 \\
\text { length } & =\sqrt{20}=2 \sqrt{5}
\end{aligned}
$$

For a general curve: approximate by line segments

Take smaller and smaller segments, add up, take limit as number of segments goes to infinity (all lengths go to zero)

Formula
The arclength L for a parametric curve $f(t)=\langle x(t), y(t)\rangle$ from $t=a$ to $t=b$ is

$$
L=\int_{a}^{b} \underbrace{\sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}} d t}_{\text {distance formula }}
$$

Need x, y differentiable, x^{\prime}, y^{\prime} continuous.
Don't forget the derivatives!

Example 1: Find the arclength of

$$
f(t)=\left\langle e^{3 t}+e^{-3 t}, 24-6 t\right\rangle
$$

from $t=0$ to $t=\ln (8)$

$$
\ln (8)
$$

Formula: $L=\int_{0}^{\ln (x)} \sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}} d t$

$$
\begin{aligned}
& x(t)=e^{3 t}+e^{-3 t} \\
& x^{\prime}(t)=3 e^{3 t}-3 e^{-3 t} \\
& y(t)=24-6 t \\
& y^{\prime}(t)=-6
\end{aligned}
$$

$$
\begin{aligned}
x^{\prime}(t) & =3 e^{3 t}-3 e^{-3 t} \\
y^{\prime}(t) & =-6 \\
\left(x^{\prime}(t)\right)^{2} & =9 e^{6 t}+9 e^{-6 t}-18 \\
\left(y^{\prime}(t)\right)^{2} & =36 \\
& =9 e^{6 t}+9 e^{-6 t}+18 \\
& =\left(3 e^{3 t}+3 e^{-3 t}\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
&\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}=\left(3 e^{3 t}+3 e^{-3 t}\right)^{2} \\
& L=\int_{0}^{\ln (8)} \sqrt{\left(3 e^{3 t}+3 e^{-3 t}\right)^{2}} d t \\
&=\int_{0}^{\ln (8)}\left(3 e^{3 t}+3 e^{-3 t}\right) d t \\
&=\left.\left(e^{3 t}-e^{-3 t}\right)\right|_{0} ^{\ln (8)} \\
&=e^{3 \ln (8)}-e^{-3 \ln (8)} \\
&=e^{\ln \left(8^{3}\right)}-e^{\ln \left(\frac{1}{8^{2}}\right)} \\
&=512-\frac{1}{512}
\end{aligned}
$$

Example 3: Find the arclength of $y=\sqrt{x}$ from $x=4$ to $x=9$.

First, parameterize by

$$
\begin{array}{ll}
x(t)=t, & y(t)=\sqrt{t}=t^{1 / 2} \\
x^{\prime}(t)=1, & y^{\prime}(t)=\frac{1}{2 \sqrt{t}}
\end{array}
$$

Then

$$
\begin{aligned}
L & =\int_{4}^{9} \sqrt{1+\left(\frac{1}{2 \sqrt{t}}\right)^{2}} d t \\
& =\int_{4}^{9} \sqrt{1+\frac{1}{4 t}} d t
\end{aligned}
$$

$$
\begin{aligned}
L & =\int_{4}^{9} \sqrt{1+\left(\frac{1}{2 \sqrt{t}}\right)^{2}} d t \\
& =\int_{4}^{9} \sqrt{1+\frac{1}{4 t}} d t \\
& =\int_{4}^{9} \sqrt{\frac{4 t+1}{4 t}} d t \\
& =\int_{4}^{9} \frac{1}{2 \sqrt{t}} \sqrt{4 t+1} d t \\
u & =\sqrt{t} \quad(v(u)=2, u(9)=3) \\
d v & =\frac{1}{2 \sqrt{t}} d t \\
v^{2} & =t \quad \text { substitute! }
\end{aligned}
$$

$$
\begin{array}{r}
L=\int_{2}^{3} \sqrt{4 v^{2}+1} d v \\
u=\frac{1}{2} \tan \theta \\
d v=\frac{1}{2} \sec ^{2} \theta d \theta
\end{array}
$$

forget bounds

$$
\begin{aligned}
& \int \sqrt{4\left(\frac{1}{2} \tan \theta\right)^{2}+1} \frac{1}{2} \sec ^{2} \theta d \theta \\
= & \frac{1}{2} \int \underbrace{\sqrt{\tan ^{2} \theta+1}}_{\sec ^{2} \theta} \sec ^{2} \theta d \theta \\
= & \frac{1}{2} \int \sec \theta \sec ^{2} \theta d \theta \\
= & \frac{1}{2} S \sec ^{3} \theta d \theta
\end{aligned}
$$

$\int \sec ^{3} \theta d \theta$ is
perhaps the hardest integral
in this class!
Will work out later

Surface Area
(Section 8.2 - kind of)

Take a parametric curve

$$
f(t)=\langle x(t), y(t)\rangle \text { with }
$$

no self-intersections
Spin the curve around the x or y axis from $t=a$ to $t=b$.

Picture

Want surface a req, not volume! Break up into pieces that look like

Take limits as number of subdivisions goes to infinity.
You get:

$$
\begin{aligned}
& S A=\int_{a}^{b} \overbrace{2 \pi \mid y(t)}^{\text {circumference }} \mid \sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}} d t \\
& \text { (about } X \text {-axis) } \\
& \text { or } \\
& S A=\int_{a}^{b} 2 \pi|x(t)| \sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}} d t \\
& \text { (about } y \text {-axis) }
\end{aligned}
$$

