Announcements

1) Quiz 1 tomorrow over Call I material
2) Review problems on Canvas under "Files"

What is calculus good for?

Solving differential equations

What is a differential equation?

An equation involving an unknown function and its derivative (s)

Example 1: $\quad \frac{d y}{d x}=x^{2}+1$
$y=$ unknown function
To get y, integrate both sides with respect to x :

$$
\begin{aligned}
& \int \frac{d y}{d x} d x=\int\left(x^{2}+1\right) d x \\
& y+C=\frac{x^{3}}{3}+x+D \\
& y=\frac{x^{3}}{3}+x+(D-C)
\end{aligned}
$$

Let $D-C=Q$

$$
y=\frac{x^{3}}{3}+x+Q
$$

Moral: you only need one arbitrary constant lin this (lass)

Example 2: (Newton's Law of Cooling)

Change in temperature in an object proportional to the difference between the temperature of an object and the ambient temperature.

Simplifying assumption: ambient temperature T is constant

Change in temperature $=$ instantaneous rate of change

Let $x(t)$ denote the temperature of the object at tine t.
"proportional" means "a constant multiple of ${ }^{\prime \prime}$

Let $k=$ the constant of proportionality

Newton's Law of Cooling

$$
\frac{d x}{d t}=k(x(t)-T)
$$

Cant directly integrate both sides! Because we don't know $x(t)$, so we cant calculate

$$
\int x(t) d t
$$

Try to solve: divide by
$x(t)-T$ on both sides:
$\frac{1}{x(t)-T} \frac{d x}{d t}=k$. Try integrating.

$$
\begin{aligned}
\int_{x(t)-T}^{\frac{1}{d t}} \frac{d x}{d t} & =S k d t \\
& =k t+C
\end{aligned}
$$

Let $v=x(t)-T, d v=\frac{d x}{d t} d t$.
Integral becomes

$$
\int \frac{1}{v} d v
$$

What is $S \frac{1}{u} d u$?

$$
u \neq 0
$$

Concentrate on $v \geq 1$.
Form the function

$$
\int_{1}^{x} \frac{1}{u} d u=\ln (x)
$$

Log property:

$$
\ln \left(a^{b}\right)=b \ln (a) \quad(a \geq 1, b>0)
$$

Verify this property for

$$
\begin{aligned}
& \int_{1}^{x} \frac{1}{u} d u \text { : show } \\
& \int_{1}^{b} \frac{1}{u} d u=b \int_{1}^{a} \frac{1}{u} d u
\end{aligned}
$$

Let $b=$ constant,$a=$ variable.
Differentiate both sides with respect to a.

By the Fundamental Theorem of Calculus, the righthand side is

$$
\begin{aligned}
& \frac{d}{d a}\left(b \int_{1}^{a} \frac{1}{v} d u\right) \\
& =b\left(\frac{d}{d a}\left(\int_{1}^{a} \frac{1}{v} d u\right)\right. \\
& =b \cdot \frac{1}{a}=\frac{b}{a}
\end{aligned}
$$

Again using Fundamental Theorem,

$$
\begin{aligned}
& \frac{d}{d a}\left(\int_{1}^{a^{b}} \frac{1}{u} d u\right) \\
& =\frac{1}{a^{b}} \cdot \frac{d}{d a}\left(a^{b}\right) \\
& =\frac{1}{a^{b}} \cdot b \cdot a^{b-1} \\
& =\frac{1}{a^{b}} \cdot b \cdot a^{b} \cdot \frac{1}{a} \\
& =\frac{b}{a}
\end{aligned}
$$

This shows that two functions have the same derivative, so they differ by a constant:

$$
\begin{aligned}
& \int_{1}^{a^{b}} \frac{1}{v} d u-b \int_{1}^{a} \frac{1}{u} d u=C \\
& C=\text { constant for } \frac{a l l}{} \\
& \text { values of } a+b .
\end{aligned}
$$

Choose $a=1$

So $C=0$

So we know $\ln (x)$ exists for

$$
x \geq 1, \quad \frac{d(\ln (x))}{d x}=\frac{1}{x}
$$

For $o<x \leq 1$

$$
\begin{aligned}
\ln (x) & =-\int_{x}^{1} \frac{1}{u} d u \\
& =\int_{1}^{x} \frac{1}{u} d u \\
& =\text { same as before }
\end{aligned}
$$

There is a number e with $\ln (e)=1$. Then using \log rule $\ln \left(a^{b}\right)=b \ln (a)$,

$$
\ln \left(e^{x}\right)=x \ln (e)=x
$$

So $f(x)=e^{x}$ is the inverse function to $\ln (x)$

Rules: For all real numbers $a+b$,

$$
\begin{aligned}
& e^{a+b}=e^{a} \cdot e^{b} \quad e^{0}=1 \\
& e^{a b}=\left(e^{a}\right)^{b}
\end{aligned}
$$

Derivative: $\quad x=\ln \left(e^{x}\right)$
Differentiate both sides wat x and use the chain rule:

$$
\begin{aligned}
\frac{d}{d x}(x) & =\frac{d}{d x}\left(\ln \left(e^{x}\right)\right) \\
1 & =\frac{1}{e^{x}} \cdot \frac{d}{d x}\left(e^{x}\right)
\end{aligned}
$$

multiply both sides by e^{x}.

$$
e^{x}=\frac{d}{d x}\left(e^{x}\right)
$$

Example $3:$

$$
\begin{aligned}
\left(-\frac{\pi}{2}<x<\frac{\pi}{2}\right) & =\int \frac{\sin (x)}{\cos (x)} d x \\
u & =\cos (x) \\
d v & =-\sin (x) d x
\end{aligned}
$$

we get

$$
\begin{aligned}
-\int \frac{1}{v} d v & =-\ln (v)+C \\
& =-\ln (\cos (x))+c
\end{aligned}
$$

Example 4: $\int_{0}^{2} \frac{x^{2}\left(10^{\sqrt{x^{3}+1}}\right)}{\sqrt{x^{3}+1}} d x$
Let $u=\sqrt{x^{3}+1}=\left(x^{3}+1\right)^{1 / 2}$

$$
\begin{aligned}
d u & =1 / 2 \cdot 3 x^{2} \cdot\left(x^{3}+1\right)^{-1 / 2} d x \\
& =3 / 2 \frac{x^{2}}{\sqrt{x^{3}+1}} d x \\
2 / 3 d u & =\frac{x^{2}}{\sqrt{x^{3}+1}} d x \\
u(0) & =\sqrt{v^{3}+1}=1 \\
u(2) & =\sqrt{2^{3}+1}=\sqrt{9}=3
\end{aligned}
$$

The integral becomes

$$
2 / 3 \int_{1}^{3} 10^{v} d v
$$

What is $\int 10^{v} d u$?
Write $10^{0}=e^{\ln \left(10^{\circ}\right)}$

$$
=e^{u \ln (10)}
$$

Substitute one more time!

$$
\text { Let } \begin{aligned}
w & =v \ln (10) \\
d w & =\ln (10) d v, \text { so } \\
\frac{1}{\ln (10)} d w & =d v
\end{aligned}
$$

$$
\begin{aligned}
& w(1)=\ln (10) \\
& \omega(3)=3 \ln (10)=\ln (1000)
\end{aligned}
$$

We get the integral

$$
\begin{aligned}
& \frac{2}{3} \frac{1}{\ln (10)} \int_{\ln (10)}^{\ln (1000)} e^{\omega} d \omega \\
= & \left.\frac{2}{3 \ln (10)} e^{\omega}\right|_{\ln (10)} ^{\ln (1000)} \\
= & \frac{2}{\ln (1000)}(1000-10) \\
= & \frac{2 \cdot 990}{\ln (1000)}=\frac{1980}{\ln (1000)}
\end{aligned}
$$

Example 5: (the only hard derivative)

$$
f(x)=x^{x}
$$

Write $x^{x}=e^{\ln \left(x^{x}\right)}$

$$
=e^{x \ln (x)}
$$

Differentiate:

$$
\begin{aligned}
\frac{d}{d x}\left(x^{x}\right) & =\frac{d}{d x}\left(e^{x \ln (x)}\right) \\
& =e^{x \ln (x)} \frac{d}{d x}(x \ln (x)) \\
& =x^{x}\left(x \cdot \frac{1}{x}+\ln (x)\right) \\
& =x^{x}(1+\ln (x))
\end{aligned}
$$

