Announcements

1) Exams returned Thursday

2) HW on curvature due Thursday

3) GIS Day 9-4 Wed, Kuchoff Hall

4) HW 6 due Tuestay 11/21

Sequences (Section 11.1)

I den: a sequence is just a list of terms, which can be finite or infinite. We will concentrate on infinite sequences of real numbers.

Precise Definition

A sequence of real numbers is a function F from the counting numbers to the real numbers. Example l' Let n be a

Counting number -nLet $f(n) = e^{-n}$.

> $f(1) = c^{-1}$ $f(1) = e^{-2}$ $f(3) = c^{-1}$

Shorthand

Instead of f(n), we write an or by or Xn etc. for the previous example. $q_1 = e^{-1}$ $\alpha_{\lambda} = e^{-\lambda}$ $q_3 = e^{-3}$ 1

Convergence

 $E_{\text{xample}} \mid : \qquad \alpha_n = \frac{1}{n}$

$$\lim_{n \to \infty} \frac{1}{n} = 0, \text{ show this}$$
Using the definition.
Pick $E > 0$. Show there
is a number N with
 $\left| \frac{1}{n} - 0 \right| < E$ when
 $n \ge N$.
implify: $\left| \frac{1}{n} - 0 \right| = \left| \frac{1}{n} \right| = \frac{1}{n}$
Show $\frac{1}{n} < E$ when $n \ge N$.

Representation Trick

or: how to really compute sequential limits.

Figure out lim
$$e^{X} \ln(1t^{3})$$
, then
 e_{X} ponentiate for the answer
 $e^{X} \ln(1t \frac{3}{e^{X}})$
 $= \frac{\ln(1t \frac{3}{e^{X}})}{(\frac{1}{e^{X}})}$
 $= \ln(1t \frac{3}{e^{X}})$
 e^{-X}
 $\lim_{X \to \infty} e^{-X} = \lim_{X \to \infty} \ln(1t \frac{3}{e^{X}}) = 0$
 $x = \infty$
So use l'Hopital's rule

The Squeete Theorem If an 4 bn 4 Cn are sequences of real numbers and lin an = lin cn = L, then n > 0 n > 0 1

$$\lim_{n \to \infty} b_n = L$$

Basic Limit Laws

If
$$(a_n)_{n=1}^{\infty}$$
 and $(b_n)_{n=1}^{\infty}$

and
$$\lim_{n \to \infty} a_n = L$$
, $\lim_{n \to \infty} b_n = M$, then

1)
$$\lim_{n \to \infty} (a_n + b_n) = L + M$$

$$\frac{1}{n-2} = L - M$$

$$31 \lim_{n \to \infty} (a_n b_n) = LM$$

4) lin
$$\frac{\alpha_n}{b_n} = \frac{C}{M}$$
 if M70.

5) If c is any constant, lim can = cL うしろ 6) If there is a counting number N with an <bo whenever $n \ge N$, then L <u>L</u> M 7) If f is continuous,

$$\lim_{n \to \infty} f(a_n) = f(L)$$

Series

(Section (1.2)

Q: How do we "add up infinitely many numbers 12

Take a sequence (an) n=1 i A : for example, $a_n = \frac{1}{2^n}$. Define the partial sums of the sequence to be $S_{k} = \sum_{n=1}^{n} a_{n}$

General (an)

 $S_1 = q_1$

 $S_2 = \alpha_1 + \alpha_2$

 $S_3 = \alpha_1 + \alpha_2 + \alpha_2$

$$Sy = a_1 + a_2 + a_3 + a_4$$

Note: $S_{k+1} = S_k + a_{k+1}$

$$S_{1} = \frac{1}{2}$$

$$S_{1} = \frac{1}{2}$$

$$S_{2} = \frac{1}{2} + \frac{1}{4}$$

$$S_{3} = \frac{1}{2} + \frac{1}{4} + \frac{1}{8}$$

$$S_{4} = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16}$$

We define the infinite series Jan to be $V \equiv I$ $\lim_{k \to \infty} S_{k} = \lim_{h \to \infty} \left(\frac{k}{2} a_{n} \right)$ provided the limit exists! - limit exists = convergent series - limit does not exist = divergent series

Equate the formulas for SK+1.

 $S_{k} + \frac{1}{2^{k+1}} = S_{k+1} = \frac{1}{2} + \frac{5^{k}}{2}$

multiplying both sides by 2,

 $S_{k} = \left| -\frac{2}{2^{k}H} \right| = \left| -\frac{1}{2^{k}} \right|$ $= \left| - \left(\frac{1}{2} \right)^{k} \right|$

$$S_{k} = \left| -\frac{\partial}{\partial x_{H}} - \left| -\frac{\partial}{\partial x_{H}} \right|^{2} \right|$$

$$= \left| -\frac{\partial}{\partial x_{H}} - \frac{\partial}{\partial x_{H}} \right|^{2}$$

$$= \left| -\frac{\partial}{\partial x_{H}} - \frac{\partial}{\partial x_{H}} - \frac{\partial}{\partial x_{H}} \right|^{2}$$

$$= \left| -\frac{\partial}{\partial x_{H}} - \frac{\partial}{\partial x_{H}} - \frac{\partial}{\partial x_{H}} \right|^{2}$$

$$= \left| -\frac{\partial}{\partial x_{H}} - \frac{\partial}{\partial x_{H}} - \frac{\partial}{\partial x_{H}} - \frac{\partial}{\partial x_{H}} \right|^{2}$$

$$= \left| -\frac{\partial}{\partial x_{H}} - \frac{\partial}{\partial x_{H}} - \frac$$