Announcements

1) Exams returned Thursday
2) HW on curvature due Thursday
3) GIS Day $9-4$ wed, Kuchoft Hall
4) How 6 due Tuesday $11 / 21$

Sequences
(Section 11.1)

Idea: a sequence is just a
list of terms, which can be finite or infinite.

We will concentrate on infinite sequences of real numbers.

Precise Definition

A sequence of real numbers is a function f from the counting numbers to the real numbers.

Example 1: Let n be a counting number.
Let $f(n)=e^{-n}$

$$
\begin{aligned}
& f(1)=e^{-1} \\
& f(2)=e^{-2} \\
& f(3)=e^{-3}
\end{aligned}
$$

Shorthand

Instead of $f(n)$, we write a_{n} or b_{n} or x_{n} etc.

For the previous example:

$$
\begin{aligned}
& a_{1}=e^{-1} \\
& a_{2}=e^{-2} \\
& a_{3}=e^{-3}
\end{aligned}
$$

Convergence

A sequence of real numbers $\left(a_{n}\right)_{n=1}^{\infty}$ is said to converge to a real number L if for all numbers $\mathcal{D}>0$, there is a counting number v with

$$
a_{n}-L \mid<\varepsilon
$$

when $n \geq N$.

Example 1: $a_{n}=\frac{1}{n}$
$\lim _{n \rightarrow \infty} \frac{1}{n}=0$, show this using the definition.

Pick $\varepsilon>0$. Show: there is a number N with
$\left|\frac{1}{n}-0\right|<\varepsilon \quad$ when $n \geq N$.
Simplify: $\left|\frac{1}{n}-0\right|=\left|\frac{1}{n}\right|=\frac{1}{n}$ Show $\frac{1}{n}<\varepsilon$ when $n \geq N$.

Show $\frac{1}{n}<\varepsilon$ when $n \geq N$. Consider $\frac{1}{\varepsilon}>0$. Whatever this number is, I can find a counting number N with

$$
N>\frac{1}{\varepsilon}
$$

Then $\varepsilon>\frac{1}{N}$, so for $n \geq N$

$$
\frac{1}{n} \leq \frac{1}{N}<\varepsilon \quad \text { done }
$$

Representation Trick
or: how to really compute sequential limits.

Given a sequence $\left(a_{n}\right)_{n=1}^{\infty}$ of real numbers, if there is a function f whose domain contains $[1, \infty)$ and
$f(n)=a_{n}$ for all counting numbers n, then if f is continuous,

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{x \rightarrow \infty} f(x)
$$

Example 2: Find

$$
\lim _{n \rightarrow \infty}\left(1+\frac{3}{e^{n}}\right)^{e^{n}}
$$

Change n's to x 's, evaluate

$$
\lim _{x \rightarrow \infty}\left(1+\frac{3}{e^{x}}\right)^{e^{x}}
$$

$e^{\ln }$ trick:

$$
\begin{aligned}
\left(1+\frac{3}{e^{x}}\right)^{e^{x}} & =e^{\ln \left(\left(1+\frac{3}{e^{x}}\right)^{e^{x}}\right.} \\
& =e^{e^{x} \ln \left(1+\frac{3}{e^{x}}\right)}
\end{aligned}
$$

Figure out $\lim _{x \rightarrow \infty} e^{x} \ln \left(1+\frac{3}{e^{x}}\right)$, then exponentiate for the answer

Figure out $\lim _{x \rightarrow \infty} e^{x} \ln \left(1+\frac{3}{e^{x}}\right)$, then exponentiate for the answer

$$
\begin{aligned}
& e^{x} \ln \left(1+\frac{3}{e^{x}}\right) \\
&= \frac{\ln \left(1+\frac{3}{e^{x}}\right)}{\left(\frac{1}{e^{x}}\right)} \\
&= \frac{\ln \left(1+3 e^{-x}\right)}{e^{-x}} \\
& \lim _{x \rightarrow \infty} e^{-x}=\lim _{x \rightarrow \infty} \ln \left(1+3 e^{-x}\right)=0
\end{aligned}
$$

So use l'Hopital's rule

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \frac{\ln \left(1+3 e^{-x}\right)}{e^{-x}} \widetilde{\sim} \text { chair rule } \\
\stackrel{H}{=} & \lim _{x \rightarrow \infty} \frac{\frac{1}{1+3 e^{-x}} \cdot 3\left(-e^{-x}\right)}{-e^{-x}} \\
= & \lim _{x \rightarrow \infty} \frac{3}{1+3 e^{-x}}=3
\end{aligned}
$$

Final answer: e^{3}

The Squeeze Theorem

If $a_{n} \leq b_{n} \leq c_{n}$ are sequences of real numbers and

$$
\begin{gathered}
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} c_{n}=L \text {, then } \\
\lim _{n \rightarrow \infty} b_{n}=L
\end{gathered}
$$

Basic Limit Laws
If $\left(a_{n}\right)_{n=1}^{\infty}$ and $\left(b_{n}\right)_{n=1}^{\infty}$ are sequences of real numbers and $\lim _{n \rightarrow \infty} a_{n}=L, \lim _{n \rightarrow \infty} b_{n}=M$, then

1) $\lim _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)=L+M$
2) $\lim _{n \rightarrow \infty}\left(a_{n}-b_{n}\right)=L-M$
3) $\lim _{n \rightarrow \infty}\left(a_{n} b_{n}\right)=L M$
4) $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\frac{L}{M}$ if $M \neq 0$.
5) If c is any constant,

$$
\lim _{n \rightarrow \infty} c a_{n}=c L
$$

6) If there is a counting number N with $a_{n} \leq b_{n}$ whenever $n \geq N$, then

$$
L \leq M
$$

7) If f is continuous,

$$
\lim _{n \rightarrow \infty} f\left(a_{n}\right)=f(L)
$$

Series
(Section 11.2)
Q: How do we "add up infinitely many numbers"?

A: Take a sequence $\left(a_{n}\right)_{n=1}^{\infty}$; for example, $a_{n}=\frac{1}{2^{n}}$.
Define the partial sums of the sequence to be

$$
S_{k}=\sum_{n=1}^{k} a_{n}
$$

General $\left(a_{n}\right)_{n=1}^{\infty}$

$$
S_{1}=a_{1}
$$

$$
S_{2}=a_{1}+a_{2}
$$

$$
S_{3}=a_{1}+a_{2}+a_{3}
$$

$$
S_{4}=a_{1}+a_{2}+a_{3}+a_{4}
$$

$$
\begin{gathered}
a_{n}=\frac{1}{2^{n}} \\
S_{1}=\frac{1}{2} \\
S_{2}=\frac{1}{2}+\frac{1}{4} \\
S_{3}=\frac{1}{2}+\frac{1}{4}+\frac{1}{8} \\
S_{4}=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}
\end{gathered}
$$

$$
S_{k}=\sum_{n=1}^{k} a_{n} \quad S_{k}=\sum_{n=1}^{k} \frac{1}{2^{n}}
$$

Note: $S_{k+1}=S_{k}+a_{k+1}$

We define the infinite series

$$
\begin{aligned}
& \sum_{n=1}^{\infty} a_{n} \text { to be } \\
& \lim _{k \rightarrow \infty} S_{k}=\lim _{h \rightarrow \infty}\left(\sum_{n=1}^{k} a_{n}\right)
\end{aligned}
$$

provided the limit exists!

- limit exists = convergent series
- limit does not exist $=$ divergent series

Example 1: $\quad a_{n}=\frac{1}{2^{n}}$

$$
\begin{aligned}
S_{k+1} & =\sum_{n=1}^{k+1} \frac{1}{2^{n}} \\
& =\underbrace{\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots+\frac{1}{2^{n}}+\frac{1}{2^{k+1}}}_{S_{k}} \\
& =S_{k}+\frac{1}{2^{k+1}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { But also, } \\
& \begin{aligned}
S_{k+1} & =\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots+\frac{1}{2^{k}}+\frac{1}{2^{k+1}} \\
& =\frac{1}{2}+\frac{1}{2}(\underbrace{\frac{1}{2}+\frac{1}{4}+\cdots+\frac{1}{2^{k-1}}}_{s_{k}}+\frac{1}{2^{k}}) \\
& =\frac{1}{2}+\frac{S_{k}}{2}
\end{aligned}
\end{aligned}
$$

Equate the formulas for S_{k+1}

$$
S_{k}+\frac{1}{2^{k+1}}=S_{k+1}=\frac{1}{2}+\frac{S_{k}}{2}
$$

So $S_{k}+\frac{1}{2^{n+1}}=\frac{1}{2}+\frac{S_{k}}{2}$

$$
\begin{aligned}
& -\frac{S_{k}}{2}-\frac{1}{2^{k+1}}-\frac{1}{2^{n+1}} \frac{-\frac{s_{k}}{2}}{S_{k}}=\frac{1}{2}-\frac{1}{2^{k+1}}
\end{aligned}
$$

multiplying both sides by 2 ,

$$
\begin{aligned}
S_{k}=1-\frac{\partial}{2^{k+1}} & =1-\frac{1}{2^{k}} \\
& =1-\left(\frac{1}{2}\right)^{k}
\end{aligned}
$$

$$
\begin{aligned}
S_{k}=1-\frac{\partial}{2^{k+1}} & =1-\frac{\partial}{2^{k} \cdot 2^{1}} \\
& =1-\frac{2}{2^{k} \cdot 2} \\
& =1-\frac{1}{2^{k}} \\
& =1-\left(\frac{1}{2}\right)^{n}
\end{aligned}
$$

Take $\lim _{k \rightarrow \infty} S_{k}=\lim _{k \rightarrow \infty}\left(1-\left(\frac{1}{2}\right)^{k}\right)$

$$
\begin{aligned}
& =1-\lim _{k \rightarrow \infty}\left(\frac{1}{2}\right)^{k} \\
& =1-0 \text { sixe } 0<\frac{1}{2}<1 \\
& =1
\end{aligned}
$$

