Announcements

1) HoWl returning tomorrow, HW2 up on Canvas

Back to Example

$$
\begin{aligned}
& \int_{0}^{\infty} t e^{-t} d t \\
= & \lim _{x \rightarrow \infty} \int_{0}^{x} t e^{-t} d t \\
& \text { Substitute } v=-t \quad v(0)=0 \\
\rightarrow & d v=-d t \quad v(x)=-x \\
= & \lim _{x \rightarrow \infty} \int_{0}^{-x}-v e^{u}(-d v) \\
= & \lim _{x \rightarrow \infty} \int_{0}^{-x} v e^{u} d v
\end{aligned}
$$

What now?

Integration by Parts
(Section 7.1)

Substitution = integrating the chain rule

Integration by parts = integrating the product rule

Definite and Indefinite Forms

$$
\begin{aligned}
& \int f(t) g^{\prime}(t) d t \\
& =f(t) g(t)-\int g(t) f^{\prime}(t) d t \\
& S_{a}^{b} f(t) g^{\prime}(t) d t \\
& =\left.f(t) g(t)\right|_{a} ^{b}-\int_{a}^{b} g(t) f^{\prime}(t) d t
\end{aligned}
$$

Usually written in indefinite form as:

$$
\int u d v=u v-\int v d u
$$

Given: $\int u d v$, transform into $u v-\int v d u$
idea: Choose u, $d r$ in your integral
$d v=$ something you can integrate $u=$ something you can differentiate

Returning to Example

$$
\int_{0}^{-x} u e^{u} d u
$$

replace "u" with "s"

$$
\int_{0}^{-x} s e^{s} d s
$$

USC integration by parts

$$
\begin{array}{ll}
u=s & v=e^{s} \\
d v=d s & d v=e^{s}
\end{array}
$$

Then

$$
\begin{aligned}
& \int_{0}^{-x} s e^{s} d s=\left.s e^{s}\right|_{0} ^{-x}-\int_{0}^{-x} e^{s} d s \\
&\left(S^{S} u d v\right.=u v-S v d u) \\
&\left.s e^{s}\right|_{0} ^{-x}=-x e^{-x} \\
&-x \\
& \int_{0}^{x} e^{s} d s=\left.e^{s}\right|_{0} ^{-x}
\end{aligned}=e^{-x}-e^{0} .
$$

Combining,

$$
\begin{aligned}
\int_{0}^{-x} s e^{s} d s & =-x e^{-x}-\left(e^{-x}-1\right) \\
& =1-e^{-x}-x e^{-x}
\end{aligned}
$$

Combining,

$$
\begin{aligned}
\int_{0}^{-x} s e^{s} d s & =-x e^{-x}-\left(e^{-x}-1\right) \\
& =1-e^{-x}-x e^{-x} \\
& =1-\frac{1}{e^{x}}-\frac{x}{e^{x}}
\end{aligned}
$$

To solve the original problem, calculate

$$
\begin{gathered}
\lim _{x \rightarrow \infty} \int_{0}^{-x} s e^{s} d x=\lim _{x \rightarrow \infty}\left(1-\frac{1}{e^{x}}-\frac{x}{e^{x}}\right) \\
\lim _{x \rightarrow \infty} 1=1 \quad \lim _{x \rightarrow \infty} \frac{1}{e^{x}}=0 \\
\lim _{x \rightarrow \infty} \frac{x}{e^{x}}=\frac{\infty}{\infty} ?
\end{gathered}
$$

To calculate
$\lim _{x \rightarrow \infty} \frac{x}{e^{x}}$, we reed
an additional trick, especially designed for $\frac{0}{0}$ or $\frac{\infty}{\infty}$ quotients: L'Hopitals Rule I

L'Hopital's Rule
(Section 6.8)
Suppose $\lim _{x \rightarrow a} f(x)=0$ and

$$
\begin{aligned}
& \lim _{x \rightarrow a} g(x)=0 \quad \text { (or } \lim _{x \rightarrow a} f(x)= \pm \infty \\
& \text { and } \left.\lim _{x \rightarrow \infty} g(x)= \pm \infty\right) \text {. Suppose }
\end{aligned}
$$

f and g are differentiable in an open interval containing $x=a$.
Then

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

Comments:

1) $a= \pm \infty$ is also allowed, just need f and g differentiable on an appropriate interval
2) L'Hopital's Rule is NOT the quotient rule!

Finishing Example

$$
\lim _{x \rightarrow \infty} \frac{x}{e^{x}}=\frac{\infty}{\infty} \text {, use I'Hopital's }
$$

Rule and indicate you are usingitl

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{x}{e^{x}} & =\lim _{x \rightarrow \infty} \frac{1}{e^{x}} \\
& =0
\end{aligned}
$$

So finally,

$$
\begin{aligned}
\int_{0}^{\infty} t e^{-t} d t & =\lim _{x \rightarrow \infty}\left(1-\frac{1}{e^{x}}-\frac{x}{e^{x}}\right) \\
& =1-0-0=1
\end{aligned}
$$

More on Laplace Transforms

Recall: $\mathcal{F}(f)(s)=\int_{0}^{\infty} e^{-s t} f(t) d t$
Find $\mathcal{L}\left(f^{\prime}\right)(s)$ in terms of $y(f)(s)$! (provided f^{\prime} exists)

$$
\begin{aligned}
\mathcal{L}\left(f^{\prime}\right)(s) & =\int_{0}^{\infty} e^{-s t} f^{\prime}(t) d t \\
& =\lim _{x \rightarrow \infty} S_{0}^{x} e^{-s t} f^{\prime}(t) d t
\end{aligned}
$$

integrate by parts

$$
\begin{aligned}
& \int_{0}^{x} e^{-s t} f^{\prime}(t) d t \\
& u=e^{-s t} \quad v=f(t) \\
& d v=\underbrace{e^{-s t}(-s) d t} d v=f^{\prime}(t) d t \\
&=-s e^{-s t} d t
\end{aligned}
$$

Then

$$
\begin{aligned}
S_{0}^{x} e^{-s t} f^{\prime}(t) d t= & \left.e^{-s t} f(t)\right|_{0} ^{x} \\
& +\int_{0}^{x} s e^{-s t} f(t) d t \\
= & \left.e^{-s t} f(t)\right|_{0} ^{x}+s \int_{0}^{x} e^{-s t} f(t) d t
\end{aligned}
$$

$$
\text { Note: } \begin{aligned}
& \lim _{x \rightarrow \infty} s \int_{0}^{x} e^{-s t} f(t) d t \\
= & s \lim _{x \rightarrow \infty} \int_{0}^{x} e^{-s t} f(t) d t \\
= & s \int_{0}^{\infty} e^{-s t} f(t) d t \\
= & s \mathcal{L}^{-s}(f)(s) \quad i \\
& \left.\lim _{x \rightarrow \infty} e^{-s t} f(t)\right|_{0} ^{x} \\
= & \lim _{x \rightarrow \infty}\left(e^{-s x} f(x)-f(0)\right) \\
& \lim _{x \rightarrow \infty} e^{-s x} f(x)=?
\end{aligned}
$$

I wish

$$
\lim _{x \rightarrow \infty} c^{-s x} f(x)=0
$$

In this case,

$$
\mathcal{L}\left(f^{\prime}\right)(s)=f(0)+s \mathcal{L}(f)(s)
$$

Laplace Transform of a Derivative

Example 1: $\int_{0}^{\pi / 2} x^{2} \cos (x) d x$
integrate by parts:

$$
\begin{array}{ll}
u=x^{2} & v=\sin (x) \\
d v=2 x d x & d v=\cos (x) d x
\end{array}
$$

So

$$
\begin{aligned}
\int_{0}^{\pi / 2} x^{2} \cos (x) d x= & \left.x^{2} \sin (x)\right|_{0} ^{\pi / 2} \\
& -\int_{0}^{\pi / 2} 2 x \sin (x) d x \\
= & \frac{\pi^{2}}{4}-\int_{\substack{\text { another } \\
\text { integration by } \\
\text { parts }}}^{\pi / 2} 2 x \sin (x) d x
\end{aligned}
$$

$$
\begin{aligned}
& \int_{0}^{\pi / 2} 2 x \sin (x) d x \\
& v=2 x \quad v \\
& d v=2 d x \quad d v=-\sin (x) d x \\
& \begin{aligned}
& \pi / 2 \\
& \int_{0}^{\pi} 2 x \sin (x) d x=-\left.2 x \cos (x)\right|_{0} ^{\pi / 2} \\
&+\int_{0}^{\pi / 2} 2 \cos (x) d x \\
&=2 \int_{0}^{\pi / 2} \cos (x) d x \\
&=\left.2 \sin (x)\right|_{0} ^{\pi / 2} \\
&=2
\end{aligned}
\end{aligned}
$$

Final answer: $\frac{-2}{\frac{\pi^{2}}{4}-2}$

Another Approach:

Tabular Trick!
For (polynomial) $\left\{\begin{array}{c}\text { exponential } \\ \text { sines } \\ \text { cosines }\end{array}\right.$

1) Make a table

v	$d v$
x^{2}	$\cos (x)$

2) Differentiate u until you get zero

v	$d v$
x^{2}	$\cos (x)$
$2 x$	
2	
0	

3) Integrate dr as many times as you differentiated

v	$d v$
x^{2}	$\cos (x)$
$2 x$	$\sin (x)$
2	$-\cos (x)$
0	$-\sin (x)$

4) Multiply diagonally with alternating signs, starting with "t"

v	$d v$
$x^{2}+\cos (x)$	
$2 x-\sin (x)$	
$2+\cos (x)$	
0	$-\sin (x)$

5) Add all terms α plog in limits

$$
\begin{aligned}
& \left.\left(x^{2} \sin (x)+2 x \cos (x)-2 \sin (x)\right)\right|_{0} ^{\pi / 2} \\
& =\frac{\pi^{2}}{4}-2
\end{aligned}
$$

Example 2: $\lim _{x \rightarrow 0} \frac{\sin (x)}{x}$
We know this limit is equal to one from Call 1, but you get it easily from 1'Hopital's Rule:

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{\sin (x)}{x} \\
= & \lim _{x \rightarrow 0} \frac{\cos (x)}{1}=\cos (0)=
\end{aligned}
$$

Example $3: \lim _{t \rightarrow \infty}\left(1+\frac{1}{t}\right)^{t}$

$$
\begin{aligned}
& \lim _{t \rightarrow \infty}\left(1+\frac{1}{t}\right)=1 \\
& \lim _{t \rightarrow \infty} t=\infty
\end{aligned}
$$

You cant conclude anything from this!
Rewrite as a quotient for L'Hopital's Rule using $e^{\ln (x)}=x$:

$$
\begin{aligned}
\left(1+\frac{1}{t}\right)^{t} & =e^{\left.\sqrt{\ln \left(\left(1+\frac{1}{t}\right)^{t}\right)}\right)} \\
& =e^{t \ln \left(1+\frac{1}{t}\right)}
\end{aligned}
$$

We only need the limit of the exponent

$$
\begin{aligned}
& \lim _{t \rightarrow \infty} t \ln \left(1+\frac{1}{t}\right) \\
& \lim _{t \rightarrow \infty} t=\infty, \quad \lim _{t \rightarrow \infty} \ln \left(1+\frac{1}{t}\right)=0
\end{aligned}
$$

Rewrite as a quotient:

$$
\begin{aligned}
& \lim _{t \rightarrow \infty} \frac{\ln \left(1+\frac{1}{t}\right)}{1 / t} \\
= & \lim _{t \rightarrow \infty} \frac{\frac{1}{1+1 / t}(1+1 / t)^{1}}{-1 / t^{2}} \\
= & \lim _{t \rightarrow \infty} \frac{\frac{1}{1+1 / t} \cdot\left(-1 / t^{2}\right)}{\frac{-1 / t^{2}}{}}
\end{aligned}
$$

We get $\lim _{t \rightarrow \infty}\left(1+\frac{1}{t}\right)=1$,
so the final answer is

$$
e^{\prime}=
$$

