Announcements

1) Office hours

M	$11-12$
T	$3: 30-4: 30$

Th $11-12$
2) Quizzes - please give me back your quizzes! Gateway will be up later today - in Math Learning Center through Webwork!
3) Webwork - demo tomorrow. twI due Thursday.

Do not use a typed-in URL for Webwork! Access through "Modules" on Canvas.

More Differential Equations

The dreaded brine problem!
A tank contains V liters of a solution of water mixed with m Kilograms of a substance (usually salt). Liquid contained $\ell_{1} \mathrm{Kg} / \mathrm{L}$ of the substance flows in at a rate of $f_{1} \mathrm{~L} / \mathrm{min}$ and liquid exits the tank at the same rate.

Problem: solve for $x(t)$, the amount of substance in the tank at time t (in $k g$) Derivative $\frac{d x}{d t}$, units are kg / \min.

Setting up the problem

$$
\begin{aligned}
\frac{d x}{d t} & =(\text { rate in })-(\text { rate out }) \\
& =l_{1} f_{1}-f_{1}\left(\frac{x(t)}{v}\right) \\
& =f_{1}\left(l_{1}-\frac{x(t)}{v}\right) \\
& =f_{1}\left(\frac{v l_{1}-x(t)}{v}\right)
\end{aligned}
$$

Divide both sides by $\left(v l_{1}-x(t)\right)$ to get

$$
\frac{1}{v l_{1}-x(t)} \frac{d x}{d t}=\frac{f_{1}}{v}
$$

f_{1}, l_{1}, V are all constants

$$
\frac{1}{v l_{1}-x(t)} \frac{d x}{d t}=\frac{f_{1}}{v}
$$

Integrate both sires with respect to t (inde pendent variable)

$$
\begin{aligned}
& \int \frac{1}{v l_{1}-x(t)} \frac{d x}{d t} d t=\int \frac{f_{1}}{v} d t \\
& u=v l_{1}-x(t) \quad=\frac{f_{1}}{v} t+C \\
& d v=-\frac{d x}{d t} d t \\
& -\int \frac{1}{v} d v=\frac{f_{1}}{v} t+C
\end{aligned}
$$

Integrating, we get

$$
-\ln (v)=\frac{f_{1}}{v} t+C
$$

Ugly Variation

There are now two valves delivering liquid. The valve we had on (value A) shuts off at time to, when valve B is turned on, delivering liquid containing $l_{2} \mathrm{~kg} / \mathrm{L}$ of substance at $f_{1} L / \mathrm{min}$.

Picture

Setting up the problem
Solve for $x(t)$, the amount of substance in the tank at time t.

Same equation

$$
\begin{aligned}
\frac{d x}{d t} & =(\text { rate in })-(\text { rate } o u t) \\
& = \begin{cases}\text { (erisinal problem) }, & t<t_{0} \\
\text { (new rate in) }, & t \geq t_{0}\end{cases} \\
& = \begin{cases}f_{1} l_{1}-f_{1}\left(\frac{x(t)}{v}\right), & t<t_{0} \\
f_{1} l_{2}-f_{1}\left(\frac{x(t)}{v}\right), & t \geq t_{0}\end{cases}
\end{aligned}
$$

What we don't want to do

Solve two problems like the original, one-value problem.

What we do want to do:
Laplace transforms!
The Laplace transform of a function f is given by

$$
\mathcal{L}(f)(s)=\int_{0}^{\infty} f(t) e^{-s t} d t
$$

$\mathcal{L}(f)$ is a function dependent on the variable " s ".

What does that mean?
We have $\int_{0}^{\infty} f(t) e^{-s t} d t$.
How do you define an integral over an infinite domain?
$\int_{0}^{\infty} f(t) e^{-s t} d t$ is defined as

$$
=\lim _{q \rightarrow \infty} \int_{0}^{q} f(t) e^{-s t} d t
$$

where $q>0$ is a real number provided the limit exists!

If the limit exists, we say the integral converges to the value of the limit. If the limit does not exist, we say the integral diverges. $\int_{0}^{\infty} f(t) e^{-S t} d t$ is an example of an improper integral.

Example: $\int_{0}^{\infty} e^{-x} d x$

$$
=\lim _{q \rightarrow \infty} \int_{0}^{q} e^{-x} d x
$$

integrate
Substitute:

$$
\begin{gathered}
u=-x \\
d u=-1 d x \\
s o-d u=d x \\
u(0)=0 \\
u(q)=-q
\end{gathered}
$$

we get

$$
\lim _{q \rightarrow \infty}-\int_{0}^{-q} e^{u} d u
$$

Integrating, we have

$$
\begin{aligned}
& \lim _{q \rightarrow \infty}-\left(e^{u} l_{0}^{-q}\right) \\
& =\lim _{q \rightarrow \infty}-\left(e^{-q}-1\right) \\
& =\lim _{q \rightarrow \infty}\left(1-e^{-q}\right) \\
& =\lim _{q \rightarrow \infty}\left(1-\frac{1}{e^{q}}\right) \\
& =1-\lim _{q \rightarrow \infty} \frac{1}{e^{q}} \\
& =1-0=1
\end{aligned}
$$

Limit results for logs and exponentials:

1) $\lim _{x \rightarrow \infty} e^{x}=\infty$
2) $\lim _{x \rightarrow-\infty} e^{x}=0$
3) $\lim _{x \rightarrow \infty} \ln (x)=\infty$
4) $\lim _{x \rightarrow 0^{+}} \ln (x)=-\infty$

Example 2: $\int_{0}^{\infty} x e^{-x} d x$

$$
\begin{aligned}
& =\lim _{q \rightarrow \infty} \int_{0}^{q} x e^{-x} d x \\
& u=-x \\
& d v=-1 d x, \text { so }-d u=d x
\end{aligned}
$$

We get $(v(0)=0, v(q)=-q)$

$$
\lim _{q \rightarrow \infty} \int_{0}^{-q} u e^{u} d u
$$

Need a new technique!

