Math 215 Homework 3- Continued

READ ME: Except where indicated, merely finding the answer to a problem is not enough to receive credit. You must show how you arrived at that answer.

1) Without using the definition, show that

$$
\lim _{(x, y) \rightarrow(1,2)} \sin \left((x-1)^{4}\right) \arctan \left(\frac{1}{x^{2}+y^{2}-2(x+2 y)+5}\right)=0 .
$$

2) Let

$$
f(x, y)= \begin{cases}\frac{x^{3} y-x y^{3}}{x^{2}+y^{2}} & (x, y) \neq(0,0) \\ 0 & (x, y)=(0,0)\end{cases}
$$

a) Find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ when $(x, y) \neq(0,0)$.
b) Use the definition to find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ at (0,0).
c) Show that the values of $\frac{\partial^{2} f}{\partial x \partial y}$ and $\frac{\partial^{2} f}{\partial y \partial x}$ are not equal at $(0,0)$. Does this contradict Clairaut's theorem?
3) Show that if f and g are differentiable real-valued functions of a single variable, then $z=f(x+6 t)+g(x-6 t)$ is a solution of the equation

$$
\frac{\partial^{2} z}{\partial t^{2}}=36 \frac{\partial^{2} z}{\partial x^{2}}
$$

