Math 215 Homework 3- Continued

READ ME: Except where indicated, merely finding the answer to a problem is not enough to receive credit. You must show how you arrived at that answer.

1) Without using the definition, show that

$$\lim_{(x,y)\to(1,2)}\sin((x-1)^4)\arctan\left(\frac{1}{x^2+y^2-2(x+2y)+5}\right) = 0.$$

2) Let

$$f(x,y) = \begin{cases} \frac{x^3y - xy^3}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

a) Find
$$\frac{\partial f}{\partial x}$$
 and $\frac{\partial f}{\partial y}$ when $(x, y) \neq (0, 0)$.

b) Use the definition to find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ at (0,0).

c) Show that the values of $\frac{\partial^2 f}{\partial x \partial y}$ and $\frac{\partial^2 f}{\partial y \partial x}$ are not equal at (0,0). Does this contradict Clairaut's theorem?

3) Show that if f and g are differentiable real-valued functions of a single variable, then z = f(x + 6t) + g(x - 6t) is a solution of the equation

$$\frac{\partial^2 z}{\partial t^2} = 36 \frac{\partial^2 z}{\partial x^2}$$