READ ME: Merely finding the answer to a problem is not enough to receive full credit; you must show how you arrived at that answer.

1) (5 points) Let

$$
f(x, y)= \begin{cases}\frac{x^{3} y-x y^{3}}{x^{2}+y^{2}}, & (x, y) \neq(0,0) \\ 0, & (x, y)=(0,0)\end{cases}
$$

a) Find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ when $(x, y) \neq(0,0)$.
b) Use the definition to find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ when $(x, y)=(0,0)$.
c) Show that the values of $\frac{\partial^{2} f}{\partial x \partial y}$ and $\frac{\partial^{2} f}{\partial y \partial x}$ are not equal at $(0,0)$. Does this say that Clairaut's Theorem is wrong? Why or why not?

