READ ME: Merely finding the answer to a problem is not enough to receive full credit; you must show how you arrived at that answer.

1) Consider the ellipse with equation

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

where $a>b$.
a) (6 points) Find a formula for the curvature of the ellipse. Hint: the ellipse is not a function, you will need to find a parameterization. Use the formula

$$
\kappa(t)=\frac{\left\|f^{\prime}(t) \times f^{\prime \prime}(t)\right\|}{\left\|f^{\prime}(t)\right\|^{3}}
$$

once you have cleverly parameterized the curve in 3 dimensions.
b) (3 points) For a given point on the ellipse, how many other points are there with the same curvature? Use the formula you obtained in a) to justify your answer.
2) (3 points) Compute

$$
\lim _{(x, y) \rightarrow(1,-1)} \arctan \left(\frac{1}{x y-x+y-1}\right) \sin (x y+1)
$$

3) (5 points) Show that

$$
\lim _{(x, y) \rightarrow(3,4)} \frac{(x-3)^{2}(y-4)^{3}}{(x-3)^{3}+(y-4)^{9}}
$$

does not exist

