Math 215 Exam 1

October 8, 2015

Directions: WRITE YOUR NAME ON THIS EXAM! Except where indicated, merely finding the answer to a problem is not enough to receive full credit; you must show how you arrived at that answer. IF you convert irrational numbers such as $\sqrt{3}$ or π into decimal approximations, round to at least 4 decimal points.

1) Given the vectors $v=\langle-6,18,-1\rangle$ and $w=\langle-8,9,12\rangle$, find
a) (4 points) a unit vector orthogonal to v.
b) (4 points) $v \cdot w$.
c) (8 points) the length of the vector projection of v onto w.
2) (15 points) Determine the equation of the plane passing through the line of intersection of the planes $-2 x+4 z=3$ and $5 x+y-z=0$ and containing the point $(2,4,5)$.
3) (18 points) Find the equation of the tangent line to

$$
f(t)=\left\langle\arctan \left(\frac{t}{2}\right), \frac{t+1}{t^{2}+2},(t+2)^{\frac{1}{t}}\right\rangle
$$

at the point $t=2$
4) (18 points) Find the arc length of the portion of the graph of

$$
f(t)=\left\langle\sin ^{3}(t), \cos ^{3}(t), \cos ^{2}(t)-\sin ^{2}(t)\right\rangle
$$

from $t=0$ to $t=\pi / 4$.
5) (23 points) Determine

$$
\lim _{t \rightarrow \infty}\left\langle\frac{\ln \left(3 t^{2}+4\right)}{2 \ln (t+5)}, 7 t \tan \left(\frac{9}{t}\right),\left(1+5 e^{-t}\right)^{e^{t}}\right\rangle
$$

