Name:

Math 215 Practice Exam 1

- 1) Given the vectors $v = \langle -6, 7, 2 \rangle$ and $w = \langle 4, -2, 5 \rangle$, find
 - a) (4 points) ||v + w||
 - b) (4 points) $2v \cdot w$
 - c) (6 points) $v \times w$.

(Answers: a) $\sqrt{78},$ b) -56, c) $\langle 39, 38, -16\rangle)$ **2)** (15 points) Find the equation of the tangent line to $f(t) = \left\langle \cos(\arctan(t)), \frac{t^3 + 1}{t - 2} \right\rangle$ at the point $(\sqrt{2}/2, -2)$. (Answer: $\langle \sqrt{2}/2, -2 \rangle + t \langle -\sqrt{2}/4, -5 \rangle$ is one such equation)

3) (15 points) Determine the equation of the plane passing through the point (-4, 1, 5) and containing the line with symmetric equations

$$\frac{x-1}{2} = y - 7 = \frac{3z-1}{6}.$$

 $\mathit{Hint:}$ find two more points on the plane. (Answer: $\langle -50, 58, 21\rangle \cdot \langle x+4, y-1, z-5\rangle = 0)$

4) Find the arc length of the portion of the curve

$$f(t) = \langle t^2, t\cos(t) - 2\sin(t/2)\cos(t/2), \cos(t) + t\sin(t) \rangle$$

from t = 0 to $t = \frac{\pi}{2}$. (Answer: $\pi^2 \sqrt{5}/8$)

5) Determine

$$\lim_{t \to \infty} \left\langle 3 \arctan(t) - \pi/2, t \sin\left(\frac{\pi}{t}\right), \left(\frac{t^2 + \ln(\pi)}{t^2}\right)^{t^2} \right\rangle.$$

You may assume t > 0. (Answer: $\langle \pi, \pi, \pi \rangle$)