Math 215 Exam 2

November 5th, 2015

Directions: WRITE YOUR NAME ON THIS EXAM! Except where indicated, merely finding the answer to a problem is not enough to receive full credit; you must show how you arrived at that answer. IF you convert irrational numbers such as $\sqrt{3}$ or π into decimal approximations, round to at least 4 decimal points.

1) (10 points, 2 points each) True/False. No justification is necessary.
a) For all functions $z=f(x, y), \frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial^{2} f}{\partial y \partial x}$ wherever the partials exist.
b) If $z=f(x, y)$ and $x=x(s, t), y=y(s, t)$, and $g(s, t)=f(x(s, t), y(s, t))$, then $\frac{\partial g}{\partial s}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial s}$.
c) The gradient vector for a function $f(x, y)$ at $\left(x_{0}, y_{0}\right)$ is orthogonal to the level curve $k=f(x, y)$ where $k=f\left(x_{0}, y_{0}\right)$.
d) The curvature of a circle increases as the radius of the circle increases.
e) If a function $z=f(x, y)$ is continuous at the point (a, b), then

$$
\lim _{(x, y) \rightarrow(a, b)} f(x, y)=f(a, b) .
$$

2) Let

$$
g(x, y)=\frac{x y-y^{2}}{y-x} .
$$

a) (6 points) Compute $\frac{\partial^{2} g}{\partial x \partial y}$.
b) (5 points) Find the directional derivative of g at the point $(1,2)$ in the direction of the vector $\langle 3,4\rangle$.
c) (4 points) Find the direction and the magnitude of maximum increase of g at the point $(1,2)$.
3) (20 points) Find the equation of the tangent plane to the level surface

$$
2=\arctan (x y+y z-x z)+z
$$

at the point $(-1,-2,2)$.
4) (25 points) Compute the curvature of the parametric function

$$
f(t)=\left\langle\cos (3 \pi t), \sin (2 \pi t), t^{t}\right\rangle
$$

at the point $t=1$. Hint: use the cross-product formula and plug in $t=1$ before you take the cross-product.
5) (20 points) Show that

$$
\lim _{(x, y) \rightarrow(3,-2)} \frac{x y^{2}+4 x y+4 x-3 y^{2}-12 y-12}{2(x-3)^{2}+(y+2)^{4}}
$$

does not exist.

