Name:

Math 215 Practice Exam 2

March 18th, 2010

1) a) (7 points) If $f(x, y)=\ln \left(\frac{2 x}{y}\right)$, find the direction of maximum decrease of f at the point $(3,-1)$ (answer: $\langle-1 / 3,-1\rangle$)
b) (3 points) Calculate the magnitude of the rate of change in the direction of maximum decrease. (answer: $\sqrt{10} / 3$
c) (8 points) Compute the directional derivative of the function in part a) at the point $(3,-1)$ in the direction of the vector $\langle 42,56\rangle$. Be sure to simplify your answer. (answer: 1)
2) (15 points) Find the equation of the tangent plane to the graph of $z=$ $\arctan \left(x^{2} y\right)$ when $x=1$ and $y=\sqrt{3}$. (answer: $\langle\sqrt{3} / 2,1 / 4,-1\rangle \cdot\langle x-1, y-$ $\sqrt{3}, z-\pi / 3\rangle=0)$
3) (15 points) Find and classify (i.e. are they local maxima, minima, or saddle points) all critical points for the function $f(x, y)=2 x^{2}-2 x y+y^{2}-4 y$. (answer: $(2,4)$ is the only critical point and is a local minimum.)
4) (12 points) Determine the maximum and minimum values of the function $f(x, y)=2 x^{2}-2 x y+y^{2}-4 y$ (note that this is the same function from problem $\# 4)$ over the closed region bounded by the square with vertices $(0,0),(0,6)$, $(6,0)$, and $(6,6)$. (answer: the max is 72 , the min is -8)
5) (15 points) Show that

$$
\lim _{(x, y) \rightarrow(1,3)} \frac{y \sin (x-1)-3 \sin (x-1)}{(x-1)^{2}+(y-3)^{2}}
$$

does not exist (answer: try the curves $y=3$ and $x-1=y-3$).

