Math 215 Exam 3

December 6, 2012

Directions: WRITE YOUR NAME ON THIS EXAM! Except where indicated, merely finding the answer to a problem is not enough to receive full credit; you must show how you arrived at that answer. DO NOT convert irrational numbers such as $\sqrt{3}$ or π into decimal approximations; just leave them as they are.

- 1) Let $\vec{F}(x, y, z) = \langle \sec(xy), x^2 zy, e^{xz} \rangle$.
 - a) (6 points) Calculate the divergence of \vec{F} .
 - b) (8 points) Calculate the curl of \vec{F} .
 - c) (6 points) Show $div(curl(\vec{F})) = 0$.

2) Let E be the region in \mathbb{R}^3 bounded by the cylinders $x^2 + y^2 = 16$, $x^2 + y^2 = 25$, the xy-plane, and the plane z = 7.

- a) (5 points) Draw the region E, labeling your picture carefully.
- b) (20 points) Determine $\int_E \sin\left(\sqrt{x^2 + y^2}\right) dV.$

3) Let R be the region in the first quadrant enclosed by the curves y = x and $x = y^3$.

a) (5 points) Draw R, labeling your picture carefully.

b) (20 points) Let C be the boundary of R, oriented counterclockwise. Evaluate the line integral $\int_C (y+e^{x^2}) dx + (9x - \arctan(\sqrt{y})) dy$. (*Hint:* what is the color of money?) **4)** (20 points) Compute the line integral $\int_C e^{xy} dx + \left(\frac{xye^{xy} - e^{xy}}{y^2}\right) dy$ where C is the curve $\langle t^{t^t}, \cos(\pi t/6) \rangle$ from t = 1 to t = 2.