Name:

Math 215 Exam 3

December 3, 2015

Directions: WRITE YOUR NAME ON THIS EXAM! Except where indicated, merely finding the answer to a problem is not enough to receive full credit; you must show how you arrived at that answer. IF you convert irrational numbers such as $\sqrt{3}$ or π into decimal approximations, round to at least 4 decimal points.

1) (10 points, 2 points each) True or false. No justification necessary.

a) The ellipse $\frac{x^2}{4} + \frac{y^2}{9} = 1$ bounds a region in \mathbb{R}^2 that is both Type I and Type II.

b)
$$\int_{\mathcal{R}} \sin(x) \cos(y) \, dA = \int_{a}^{b} \sin(x) \, dx \cdot \int_{c}^{d} \cos(y) \, dy$$
 if $\mathcal{R} = [a, b] \times [c, d]$.

c) A continuous, real valued function on a closed region \mathcal{R} in \mathbb{R}^2 attains its maximum and minimum on \mathcal{R} .

d) If (a, b) is a critical point of z = f(x, y) and f is differentiable, then

$$\frac{\partial f}{\partial x}(a,b) = \frac{\partial f}{\partial y}(a,b) = 0.$$

e) In polar coordinates, $r = x^2 + y^2$.

2) (21 points) Find and classify (i.e. are they local maxima, minima, or saddle points) all critical points for the function $f(x, y) = x^2y + 2y^2 + x^2$.

3) (18 points) Find the closest point(s) to the origin on the surface

$$x^2 + y + z = 5.$$

4) Let R be the region in the first quadrant enclosed by the curves $x^2 + y^2 = 4$ and $x^2 + y^2 = 9$.

- a) (5 points) Draw R, labeling your picture carefully.
- b) (19 points) Determine $\int_R 10^{x^2+y^2} dA$.

5) Let R be the region in the first quadrant enclosed by the y-axis and the curves y = 1 and y = x.

- a) (5 points) Draw the region R, labeling your picture carefully.
- b) (22 points) Determine $\int_R x^2 \sin(\pi y^2) dA$.