Name:

Math 215 Exam 3

December 3, 2015

Directions: WRITE YOUR NAME ON THIS EXAM! Except where indicated, merely finding the answer to a problem is not enough to receive full credit; you must show how you arrived at that answer. IF you convert irrational numbers such as $\sqrt{3}$ or π into decimal approximations, round to at least 4 decimal points.

1) (10 points, 2 points each) True or false. No justification necessary.
a) The ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$ bounds a region in \mathbb{R}^{2} that is both Type I and Type II.
b) $\int_{\mathcal{R}} \sin (x) \cos (y) d A=\int_{a}^{b} \sin (x) d x \cdot \int_{c}^{d} \cos (y) d y$ if $\mathcal{R}=[a, b] \times[c, d]$.
c) A continuous, real valued function on a closed region \mathcal{R} in \mathbb{R}^{2} attains its maximum and minimum on \mathcal{R}.
d) If (a, b) is a critical point of $z=f(x, y)$ and f is differentiable, then

$$
\frac{\partial f}{\partial x}(a, b)=\frac{\partial f}{\partial y}(a, b)=0 .
$$

e) In polar coordinates, $r=x^{2}+y^{2}$.
2) (21 points) Find and classify (i.e. are they local maxima, minima, or saddle points) all critical points for the function $f(x, y)=x^{2} y+2 y^{2}+x^{2}$.
3) (18 points) Find the closest point(s) to the origin on the surface

$$
x^{2}+y+z=5 .
$$

4) Let R be the region in the first quadrant enclosed by the curves $x^{2}+y^{2}=4$ and $x^{2}+y^{2}=9$.
a) (5 points) Draw R, labeling your picture carefully.
b) (19 points) Determine $\int_{R} 10^{x^{2}+y^{2}} d A$.
5) Let R be the region in the first quadrant enclosed by the y-axis and the curves $y=1$ and $y=x$.
a) (5 points) Draw the region R, labeling your picture carefully.
b) (22 points) Determine $\int_{R} x^{2} \sin \left(\pi y^{2}\right) d A$.
