Name:

Math 215 Practice Exam 3

1) (15 points) Find inequalities in SPHERICAL coordinates for the region above the plane $z=5$ and inside the sphere $z^{2}+x^{2}+y^{2}-10 z=0$.
2) Let $\vec{F}(x, y, z)=\left\langle\arctan (x y), \ln \left(x^{2}+(y+1)^{2}\right), x\right\rangle$.
a) Determine whether \vec{F} is conservative.
b) Calculate $\operatorname{div}(\vec{F})$ and $\operatorname{curl}(\vec{F})$.
c) Demonstrate that $\operatorname{div}(\operatorname{curl}(\vec{F}))=0$.
3) If C is the path (oriented counterclockwise) determined by the triangle with vertices $(0,0),(1,0)$, and $(1,2)$, calculate

$$
\int_{C} x y d x+x^{2} d y
$$

4) Consider the integral $\int_{\mathcal{R}}\left(x^{4}-y^{4}\right) e^{2 x y} d x d y$ where \mathcal{R} is the region in the first quadrant bounded by the y-axis, $x^{2}+y^{2}=\sqrt{2}, x^{2}-y^{2}=1 / 4$, and $x^{2}-y^{2}=4 / 9$.
a) (5 points) Sketch the region \mathcal{R}
b) (8 points) Find the Jacobian of the transformation

$$
T(u, v)=\left(\frac{\sqrt{u+v}}{\sqrt{2}}, \frac{\sqrt{u-v}}{\sqrt{2}}\right)
$$

c) (12 points) Evaluate the integral, using any method at your disposal.

