Math 215 Final

December 15, 2015

Directions: WRITE YOUR NAME ON THIS EXAM! Except where indicated, merely finding the answer to a problem is not enough to receive full credit; you must show how you arrived at that answer. IF you convert irrational numbers such as $\sqrt{3}$ or π into decimal approximations, round to at least 4 decimal points.

Now, if you had a choice on whether to take this exam, you must also sign to indicate your understanding of the following statement:

I understand that in choosing to take this final, I may lower my grade from what it was before the final.

SIGNED:

1) Given the vectors $v=\langle 4,-1,3\rangle$ and $w=\langle-2,-5,0\rangle$, calculate
a) (4 points) $\|v+w\|$
b) (6 points) $v \times w$
c) (4 points) the angle θ between v and $v \times w$, correct to the nearest degree.
2) (10 points) Find the equation of the plane parallel to the plane

$$
-5 x+17 y-9 z=2
$$

and containing the point $(-1,1,15)$.
3) (12 points) Find the equation of the tangent line to

$$
r(t)=\left\langle\tan (t), \sin (2 t), t^{2}-\frac{\pi^{2}}{16}\right\rangle
$$

at the point $(1,1,0)$.
4) Let

$$
g(x, y)=\frac{2 x y^{2}-2 x^{3} y}{x^{2}-y}
$$

a) (6 points) Compute $\frac{\partial^{2} g}{\partial y \partial x}$.
b) (5 points) Find the directional derivative of g at the point $(3,-4)$ in the direction of the vector $\langle 8,15\rangle$.
c) (4 points) Find the direction and the magnitude of maximum increase of g at the point $(3,-4)$.
5) (12 points) Determine the equation of the tangent plane to the graph of

$$
3=\cos (\pi x y)+x y+e^{z}
$$

at the point $(1,-1, \ln (5))$.
6) (15 points) Find three positive numbers whose product is 125 and whose sum is a minimum.
7) a) (10 points) Set up an integral representing the arc length of the curve

$$
r(t)=\left\langle t, t^{2}, \frac{4 t^{3 / 2}}{3}\right\rangle
$$

from $t=1 / 2$ to $t=5 / 2$.
b) (6 points) Compute the arc length.
8) Let \mathcal{R} be the region in the fourth quadrant of \mathbb{R}^{2} that is bounded by the x-axis, the circle $x^{2}+y^{2}=64$, and the line $y=-x$.
a) (5 points) Draw R, labeling your picture carefully.
b) (15 points) Evaluate the integral $\int_{\mathcal{R}}\left(x^{2}+y^{2}\right)^{1 / 3} d A$.
9) Let \mathcal{R} be the region in the first quadrant of \mathbb{R}^{2} that is bounded by the curve $x=y^{1 / 5}$, the line $x=1$, and the x-axis.
a) (5 points) Draw R, labeling your picture carefully.
b) (15 points) Evaluate the integral $\int_{\mathcal{R}} \frac{1}{1+x^{6}} d A$.
10) (11 points) Show that

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{4 x^{2}+9 y^{2}}
$$

does not exist.
11) (15 points) Find the integral of $f(x, y, z)=x$ over the tetrahedron with vertices $(0,0,0),(0,1,0),(3,0,0)$, and $(0,0,1)$.
12) Let \mathcal{E} be the region in \mathbb{R}^{3} that is inside the sphere $x^{2}+y^{2}+z^{2}=36$, outside the sphere $x^{2}+y^{2}+z^{2}=4$, and above the $x y$-plane.
a) (5 points) Sketch the region of integration \mathcal{E}.
b) (15 points) Evaluate the integral $\int_{\mathcal{E}} \arctan \left(\sqrt{\frac{x^{2}+y^{2}}{z^{2}}}\right) d V$

