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Math 215 Practice Final

1) Given the vectors v = 〈1, 4, 7〉 and w = 〈8,−2, 6〉, calcuate

a) (4 points) v · w

b) (6 points) v × w

c) (2 points) v · (v × w)
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2) (12 points) Find the equation of the tangent line to the curve r(t) =
〈t, cos(πt), ln(t)〉 when t = 1
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3) Let f(x, y) = arctan(4x+ y).

a) (6 points) Find the direction of maximum increase of f at the point
(−1, 4).

b) (3 points) Calculate the magnitude of the rate of change in the direction
of maximum increase.

c) (8 points) Compute the directional derivative at the point (−1, 4) in
the direction of the vector 〈9,−40〉. Be sure to simplify your answer.
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4) (12 points) Determine the equation of the tangent plane to the graph of
the surface x2 + y3 + z4 = 18 at the point (1, 1, 2).
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5) (20 points) Locate and classify all critical points (i.e. are they local
maxima, minima, or saddle points) of the function f(x, y) = x3+y3+9xy+1.

5



6) a) (10 points) Set up an integral representing the arc length of the curve
r(t) = 〈sin(t)− t cos(t), cos(t) + t sin(t), t2/2〉 from t = 0 to t = 5.

b) (8 points) Compute the arc length.
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7) (15 points) Find
∂z

∂x
at (3, 0) if x2z5 + x3y4 − 8 = 2zy2

.
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8) Given the integral

∫ 8

0

∫ 2

3
√

y

sin(πx2) dx dy,

a) (5 points) Sketch the region of integration.

b) (15 points) Evaluate the integral.
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9) (15 points) Find inequalities in SPHERICAL coordinates for the region
above the xy-plane, below (or outside, if you prefer) the cone z2 = x2 + y2

and inside the cylinder x2 + y2 = 9.
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10) An object occupies the region inside the ellipsoid
x2

4
+ y2 +

z2

25
= 1 and

above the xy-plane.

a) (5 points) Find the Jacobian of the transformation T (r, θ) = (2r cos(θ), r sin(θ)).

b) (12 points) Using the transformation S(r, θ, z) = (2r cos(θ), r sin(θ), z),
determine the mass of the object if its density is given by ρ(x, y, z) = z. Note:
The Jacobian of S is equal to the Jacobian for the transformation T from
part a).

c) (15 points) Calculate the z-coordinate of the center of mass of the
object.
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11) Show that

lim
(x,y)→(5,7)

(xy − 7x+ 35− 5y)2

2(x− 5)3 + (y − 7)6

does not exist.
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12) Find the volume of the tetrahedron in the first octant spanned by the
points (0, 0, 0), (0, 0, 4), (0, 4, 0), and (2, 0, 0).
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