Name:

Math 215 Practice Final

1) Given the vectors $v=\langle 1,4,7\rangle$ and $w=\langle 8,-2,6\rangle$, calcuate
a) (4 points) $v \cdot w$
b) (6 points) $v \times w$
c) $(2$ points $) ~ v \cdot(v \times w)$
2) (12 points) Find the equation of the tangent line to the curve $r(t)=$ $\langle t, \cos (\pi t), \ln (t)\rangle$ when $t=1$
3) Let $f(x, y)=\arctan (4 x+y)$.
a) (6 points) Find the direction of maximum increase of f at the point $(-1,4)$.
b) (3 points) Calculate the magnitude of the rate of change in the direction of maximum increase.
c) (8 points) Compute the directional derivative at the point $(-1,4)$ in the direction of the vector $\langle 9,-40\rangle$. Be sure to simplify your answer.
4) (12 points) Determine the equation of the tangent plane to the graph of the surface $x^{2}+y^{3}+z^{4}=18$ at the point $(1,1,2)$.
5) (20 points) Locate and classify all critical points (i.e. are they local maxima, minima, or saddle points) of the function $f(x, y)=x^{3}+y^{3}+9 x y+1$.
6) a) (10 points) Set up an integral representing the arc length of the curve $r(t)=\left\langle\sin (t)-t \cos (t), \cos (t)+t \sin (t), t^{2} / 2\right\rangle$ from $t=0$ to $t=5$.
b) (8 points) Compute the arc length.
7) (15 points) Find $\frac{\partial z}{\partial x}$ at $(3,0)$ if $x^{2} z^{5}+x^{3} y^{4}-8=2^{z y^{2}}$.
8) Given the integral $\int_{0}^{8} \int_{\sqrt[3]{y}}^{2} \sin \left(\pi x^{2}\right) d x d y$,
a) (5 points) Sketch the region of integration.
b) (15 points) Evaluate the integral.
9) (15 points) Find inequalities in SPHERICAL coordinates for the region above the $x y$-plane, below (or outside, if you prefer) the cone $z^{2}=x^{2}+y^{2}$ and inside the cylinder $x^{2}+y^{2}=9$.
10) An object occupies the region inside the ellipsoid $\frac{x^{2}}{4}+y^{2}+\frac{z^{2}}{25}=1$ and above the $x y$-plane.
a) (5 points) Find the Jacobian of the transformation $T(r, \theta)=(2 r \cos (\theta), r \sin (\theta))$.
b) (12 points) Using the transformation $S(r, \theta, z)=(2 r \cos (\theta), r \sin (\theta), z)$, determine the mass of the object if its density is given by $\rho(x, y, z)=z$. Note: The Jacobian of S is equal to the Jacobian for the transformation T from part a).
c) (15 points) Calculate the z-coordinate of the center of mass of the object.
11) Show that

$$
\lim _{(x, y) \rightarrow(5,7)} \frac{(x y-7 x+35-5 y)^{2}}{2(x-5)^{3}+(y-7)^{6}}
$$

does not exist.
12) Find the volume of the tetrahedron in the first octant spanned by the points $(0,0,0),(0,0,4),(0,4,0)$, and $(2,0,0)$.

