Math 216 Assignment 3 Supplement

READ ME: Merely finding the answer to a problem is not enough to receive full credit; you must show how you arrived at that answer.

1) Given the heat equation

$$
\frac{1}{2} \frac{\partial^{2} u}{\partial x^{2}}(x, t)=\frac{\partial u}{\partial t}(x, t)
$$

with initial conditions

$$
\frac{\partial u}{\partial x}(0, t)=0, \frac{\partial u}{\partial x}(\pi, t)=0, u(x, 0)=1
$$

we observed that if we assume $u(x, t)=f(x) g(t)$, then we are led to the equation

$$
\frac{f^{\prime \prime}(x)}{f(x)}=\alpha=\frac{g^{\prime}(t)}{2 g(t)}
$$

where α is a real number. We solved for g and f in the case $\alpha<0$.
a) (6 points) Solve for u in the case where $\alpha=0$. These are the trivial solutions to the heat equation.
b) (5 points) Solve for u in the case where $\alpha>0$. You may use the notes to obtain the solution for g and the solution for f up to the point where we solved for r in the case $\alpha<0$.
2) (\#13 Section 4.10) (9 points) A mass weighing 32 lb is attached to a spring hanging from the ceiling and comes to rest at its equilibrium position. At time $t=0$, an external force $F(t)=3 \cos (4 t) \mathrm{lb}$ is applied to the system. If the spring constant is $5 \mathrm{lb} / \mathrm{ft}$ and the damping constant is $2-\mathrm{lb}-\mathrm{sec} / \mathrm{ft}$, find the steady-state solution for the system.

