Name:

Math 216 Exam 1

October 8, 2015

Directions: WRITE YOUR NAME ON THIS EXAM! Except where indicated, merely finding the answer to a problem is not enough to receive full credit; you must show how you arrived at that answer.

1) (3 points each) For each differential equation, determine its order and whether it is linear or homogeneous.
a) $x^{3} \frac{d^{2} y}{d x^{2}}+2 x \frac{d y}{d x}+y=\cos (x)$.
b) $y^{\prime}-2 y^{2} x=0$
c) $\frac{d^{3} y}{d x^{2}}+\ln (x+y)-6 x=0$
2) (16 points) Given the intial value problem

$$
\frac{d y}{d x}=x^{3}+y^{2}, y(0)=1
$$

sketch an approximation of the solution on the interval [0, 2] using Euler's method with step size $h=1$. Show your work!

3) (20 points) Describe all solutions for y to the equation

$$
2 y+x \frac{d y}{d x}=\ln (x)
$$

4) (25 points) Suppose you are given a mass-spring oscillator with no external force acting upon it. If the mass m is 1 kg , the damping coefficient is $b=16$, and the spring constant is $k=64$, find a formula for the position $y(t)$ of the object given that $y(0)=4$ and $y^{\prime}(0)=3$.
5) (30 points) Find the solution to the initial value problem

$$
\frac{d y}{d x}=y^{2} \sin ^{2}(x)+7 y \sin ^{2}(x)+y^{2}+12+7 y+12 \sin ^{2}(x), y(0)=0 .
$$

on the interval $0 \leq x \leq .2$. You may assume $y(x) \geq 0$ on this interval.

BONUS: (10 points) Let I be an open interval and let f and g be two differentiable, real valued functions on I. Suppose that f and g are linearly dependent. Show that the Wronskian of f and g must be zero on I.

