Name:

## Math 216 Exam 2

November 5, 2015

Directions: WRITE YOUR NAME ON THIS EXAM! Except where indicated, merely finding the answer to a problem is not enough to receive full credit; you must show how you arrived at that answer.

1) (3 points each) For each homogeneous second-order differential equation, determine whether it is a Cauchy-Euler equation, then write down the generic form of two linearly independent solutions to each equation.
a) $\frac{d^{2} y}{d t^{2}}+6 \frac{d y}{d t}+9 y=0$.
b) $y^{\prime \prime}-2 y=0$
c) $\frac{1}{t} \frac{d^{2} y}{d t^{2}}+\frac{1}{t^{2}} \frac{d y}{d t}+\frac{y}{t^{3}}=0$
2) (16 points) Suppose $E(t)=\cos (t) \sin (t)$ volts on the simple RLC circuit given below (resistance is in Ohms):

a) (4 points) Write down an equation relating all forces acting on the circuit.
b) (12 points) Determine BUT DO NOT SOLVE a differential equation whose solution would obtain the current $I$.
3) (36 points) Given the second order equation

$$
t^{2} y^{\prime \prime}-t y^{\prime}+y=t^{2}
$$

find all solutions for $y$.
4) (37 points) Suppose you are given a mass-spring oscillator with an external force of $\cos (3 t)$ acting upon it. If the mass $m$ is 1 kg , the damping coefficient is $b=7$, and the spring constant is $k=10$, find a formula for the position $y(t)$ of the object given that $y(0)=4$ and $y^{\prime}(0)=3$. You may use the formula

$$
\int e^{k t} \cos (m t) d t=\frac{e^{k t}(k \cos (m t)+m \sin (m t))}{m^{2}+k^{2}}
$$

for constants $k$ and $m$.

BONUS: (10 points) Let $f$ and $g$ be two linearly independent solutions to the differential equation

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0
$$

for some real-valued, differentiable functions $p$ and $q$. Show that $h(t)=f(t)+i g(t)$ is also a solution.

