Name:

Math 216 Final

December 18, 2015

Directions: WRITE YOUR NAME ON THIS EXAM! Except where indicated, merely finding the answer to a problem is not enough to receive full credit; you must show how you arrived at that answer. IF you convert irrational numbers such as $\sqrt{3}$ or π into decimal approximations, round to at least 4 decimal points.

Now, if you had a choice on whether to take this exam, you must also sign to indicate your understanding of the following statement:

I understand that in choosing to take this final, I may lower my grade from what it was before the final.

SIGNED:

1) (3 points each) For each differential equation, determine its order and whether it is linear or homogeneous.
a) $x \frac{d^{2} y}{d x^{2}}-\sin (x) \frac{d y}{d x}+y=3^{x}$.
b) $\left(y+y^{\prime}\right)^{2}=\arctan (x)$
c) $\frac{d^{4} y}{d x^{4}}-6 \frac{d^{2} y}{d x^{2}}=0$
2) (12 points each) Find all singular points for the following differential equations and classify them as regular or irregular.
a) $\left(x^{2}-2 x\right) y^{\prime \prime}+x y^{\prime}+x^{2} y=0$
b) $\left(x^{2}-x-20\right)^{2} y^{\prime \prime}+(6 x-30)^{2} y^{\prime}+(x-5) y=0$
3) A tank holding 400 L of brine initially contains 20 kg of dissolved salt. The tank has two valves, A and B, only one of which is open at any given time. When valve A is open, $10 \mathrm{~L} / \mathrm{min}$ of brine flows into the tank containing $.04 \mathrm{~kg} / \mathrm{L}$ of salt. When valve B is open, $10 \mathrm{~L} / \mathrm{min}$ of brine flows into the tank containing $.15 \mathrm{~kg} / \mathrm{L}$ of salt. The exit valve C removes $10 \mathrm{~L} / \mathrm{min}$ of brine. Let $x(t)$ denote the amount of salt in the tank at time t and suppose valve A is initially open.
a) (7 points) Determine an initial value problem for $x(t)$ if only valve A is ever open.
b) (4 points) How does your initial value problem from a) change if, after 15 minutes, valve B is opened and valve A closed? Write down the change explicitly.
4) (14 points) Solve the initial value problem

$$
\frac{d x}{d t}=\frac{2}{5}-\frac{x(t)}{40}
$$

if $x(0)=20$.
5) Suppose you are given a mass-spring oscillator initially at rest 1 m below equilibrium. Suppose the mass m is 3 kg , the damping coefficient is zero, and the spring constant is $k=27$. Let $y(t)$ denote the position of the mass.
a) (7 points) Determine an initial value problem for $y(t)$ if there are no external forces acting on the system.
b) (2 points) How does your initial value problem from a) change if there is an external force of $5 \cos (4 \pi t) \mathrm{N}$ acting on the system? Write down the change explicitly.
c) (4 points) How does your initial value problem from a) change if, at $t=\pi / 4$ seconds, the mass is struck by a hammer with a force of 10 N ? Write down the change explicitly.
6) (22 points) Solve the formal initial value problem

$$
3 y^{\prime \prime}+27 y=10 \delta\left(t-\frac{\pi}{4}\right)
$$

if $y(0)=1$ and $y^{\prime}(0)=0$.
7) Consider a simple $R L$ circuit with one voltage source, one resistor, and one inductor, where the value of the resistance is 10Ω and the value of the inductance is $8 / 5 H$. Let $I(t)$ denote the current and suppose that $I(0)=2 A$ and $I^{\prime}(0)=0$.
a) (5 points) Determine a differential equation whose solution yields $I(t)$ if the total voltage $E(t)$ of the system is zero.
b) (2 points) How does your equation from a) change if the total voltage of the system is given by $E(t)=\sin (4 t)$? Write down the change explicitly.
c) (10 points) Suppose the circuit from part b) also contains a capacitor with capacitance $1 / 10 F$. Determine a differential equation whose solution yields $I(t)$.
8) (38 points) Solve the initial value problem

$$
\frac{8}{5} I^{\prime \prime}+10 I^{\prime}+10 I=4 \cos (4 t)
$$

$I(0)=2, I^{\prime}(0)=0$.
9) (13 points) Let u denote the temperature inside the cylinder $x^{2}+y^{2} \leq 9$. Suppose solutions $u=u(r, \theta, z, t)$ are assumed independent of z and θ (so in fact, $u=u(r, t)$). The Heat Equation is

$$
k \frac{\partial u}{\partial t}=\left(\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}\right)
$$

Find two ordinary differential equations that, when solved, will produce solutions to the Heat Equation, but DO NOT SOLVE THE EQUATIONS. Hint: begin by assuming $u(r, t)=f(r) g(t)$ for some twice-differentiable functions f and g.
10) (39 points) If α is a real number, solve the differential equations

$$
g^{\prime}(t)+\alpha g(t)=0
$$

and

$$
r^{2} f^{\prime \prime}(r)+r f^{\prime}(r)+\alpha r^{2} f(r)=0
$$

given that $f(3) g(t)=1$.

BONUS 1: (10 points) Suppose that f_{1} and f_{2} are two functions which are analytic at the point $x=0$ with radii of convergence r_{1} and r_{2}, respectively. If r_{1} and r_{2} are both larger than zero, determine the minimum radius of convergence of $f_{1}+f_{2}$.

BONUS 2: (10 points) Find the inverse Laplace Transform of

$$
F(s)=\arctan \left(\frac{1}{s}\right) .
$$

LaPlace Transforms and Properties

1. $\mathcal{L}\left(e^{a t}\right)(s)=\frac{1}{s-a}, s>a$
2. $\mathcal{L}\left(t^{n}\right)(s)=\frac{n!}{s^{n+1}}, s>0$
3. $\mathcal{L}(\cos (a t))(s)=\frac{s}{s^{2}+a^{2}}, s>0$
4. $\mathcal{L}(\sin (a t))(s)=\frac{a}{s^{2}+a^{2}}, s>0$
5. $\mathcal{L}(\delta(t-a))(s)=e^{-a s}, s>0$ where δ is the Dirac delta "function".
6. $\mathcal{L}(u(t-a) f(t-a))(s)=e^{-a s} \mathcal{L}(f)(s)$ where u is the Heaviside function.
7. $\mathcal{L}\left(e^{a t} f(t)\right)(s)=\mathcal{L}(f)(s-a)$

For number 8): a) If you choose variation of parameters to solve this problem,

$$
\int e^{a t} \cos (b t) d t=\frac{e^{a t}(a \cos (b t)+b \sin (b t))}{a^{2}+b^{2}}
$$

b) If you choose to apply the Laplace Transform

$$
\frac{(5 / 2) s}{(s+5)(s+5 / 4)\left(s^{2}+16\right)}=\frac{10}{123(s+5)}-\frac{40}{843(s+5 / 4)}-\frac{10(39 s-400)}{11521\left(s^{2}+16\right)} .
$$

