Math 454/554 Assignment 1

Due Tuesday, 9/2

1) Solve the following ODE's for y.

- a) (separable equations) $y' = 1 + x + y^2 + xy^2$.
- b) (integrating factors) $y' + \frac{2}{x}y = \frac{\cos(x)}{x^2}, y(\pi) = 0, x > 0.$

c) (homogeneous equations with constant coefficients) y'' + 4y' + 4y = 0, y(-1) = 2, y'(-1) = 1.

- d) (variation of parameters) $y'' + 4y' + 4y = \frac{1}{x^2 e^{2x}}, x > 0.$
- e) (series solutions) xy'' + y' + xy = 0, about $x_0 = 1$.

Due Thursday, 9/23

2) Given $f(x) = C_1 e^{irx} + C_2 e^{-irx}$, where C_1 and C_2 are arbitrary real constants and r > 0, show that there exist complex constants D_1 and D_2 with $f(x) = D_1 \cos(rx) + D_2 \sin(rx)$.

3) # 8, Section 5 (only verify when $n \neq m$).

4) For $0 \le x \le 1$, define $f_n(x) = n^2 x (1 - x^2)^n$ where n is a natural number. Show that $f_n(x)$ converges to zero pointwise, but that

$$\lim_{n \to \infty} \int_0^1 f_n(x) \, dx \neq 0.$$

Conclude that $\{f_n\}_{n=1}^{\infty}$ cannot converge to 0 uniformly on [0, 1].

5) # 5, Section 53 (you may simply assume that f and g are continuous on [a, b]).

6) If $-1 \le x \le 1$ and n is a natural number, define

$$f_n(x) = \begin{cases} 0 & \text{if } \frac{1}{n} < |x|, \\ 1 - |nx| & \text{if } |x| \le \frac{1}{n}. \end{cases}$$

Show that $f_n \to 0$ in mean (L^2) but that the pointwise limit is not a continuous function.

7) (only mandatory for graduate students) Make 3-D plots of the family of functions $\{e^{-\lambda^2 kt} \cos(\lambda x)\}_{\lambda \in \mathbb{R}}$ for at least 3 of your favorite (distinct) values of λ using Matlab or Mathematica. For example, in Matlab, write a function mfile, say u.m, as follows:

function y = u(x,t,k) y = exp($-\lambda^2$ *k*t)*cos(λ *x);

Then use the commands meshgrid and surf to make a 3-D plot.