Math 454/554 Assignment 1 Solutions

1).
a) $\tan \left(x+\frac{x^{2}}{2}+C\right)$
b) $\frac{\sin (x)}{x^{2}}$
c) $7 e^{-2 x-2}+5 x e^{-2 x-2}$
d) $\left(-\ln (x)+C_{1}\right) e^{-2 x}+\left(-\frac{1}{x}+C_{2}\right) x e^{-2 x}$
e) The relations between the coefficients are

$$
a_{0}+a_{1}+2 a_{2}=0
$$

and for $n \geq 2$,

$$
a_{n-2}+(n+1) \cdot n a_{n+1}+n^{2} a_{n}+a_{n-1}=0 .
$$

2) $D_{1}=C_{1}+C_{2}, D_{2}=i\left(C_{1}-C_{2}\right)$
3)

$$
\begin{aligned}
\int_{0}^{\pi} \cos (m x) \cos (n x) d x & =\frac{1}{2} \int_{0}^{\pi} \cos ((m-n) x)+\cos ((m+n) x) d x \\
& =\left.\frac{1}{2}\left\{\frac{\sin ((m-n) x)}{m-n}+\frac{\sin ((m+n) x)}{m+n}\right\}\right|_{0} ^{\pi}
\end{aligned}
$$

which is legitimate since $n \neq m$ implies that $m-n$ is never 0 . Substituting the limits of integration, we get

$$
\frac{1}{2}\left\{\frac{\sin ((m-n) \pi)}{m-n}+\frac{\sin ((m+n) \pi)}{m+n}\right\}-0=0
$$

4) If $x=1$ or $x=0$, then $f_{n}(x)=0$ for all n. If $0<x<1$, then $0<x^{2}<1$ and so $0<1-x^{2}<1$. Using l'Hopital's rule, if we fix such an x,

$$
\begin{aligned}
\lim _{n \rightarrow \infty} n^{2} x\left(1-x^{2}\right)^{n} & =x \lim _{n \rightarrow \infty} \frac{n^{2}}{\left(1-x^{2}\right)^{-n}}=x \lim _{n \rightarrow \infty} \frac{2 n}{-\ln \left(1-x^{2}\right)\left(1-x^{2}\right)^{-n}} \\
& =x \lim _{n \rightarrow \infty} \frac{2}{\left(\ln \left(1-x^{2}\right)\right)^{2}\left(1-x^{2}\right)^{-n}}=\frac{2 x}{\left(\ln \left(1-x^{2}\right)\right)^{2}} \lim _{n \rightarrow \infty}\left(1-x^{2}\right)^{n} \\
& =0
\end{aligned}
$$

since $0<1-x^{2}<1$. Therefore, $f_{n} \rightarrow 0$ pointwise.
However,

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(x) d x & =\lim _{n \rightarrow \infty} \int_{0}^{1} n^{2} x\left(1-x^{2}\right)^{n} d x=\lim _{n \rightarrow \infty} n^{2} \int_{0}^{1} x\left(1-x^{2}\right)^{n} d x \\
& =\lim _{n \rightarrow \infty}-\left.n^{2} \frac{\left(1-x^{2}\right)^{n+1}}{2(n+1)}\right|_{0} ^{1}=\lim _{n \rightarrow \infty} \frac{n^{2}}{2(n+1)} \\
& =\infty
\end{aligned}
$$

and so

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(x) d x=\infty \neq 0=\int_{0}^{1} \lim _{n \rightarrow \infty} f_{n}(x) d x
$$

If $f_{n} \rightarrow 0$ uniformly, these two quantities would be equal, and so we conclude that f_{n} does not converge to 0 uniformly.
5)

$$
\begin{aligned}
& \int_{a}^{b} \int_{a}^{b}(f(x) g(y)-g(x) f(y))^{2} d x d y \\
& =\int_{a}^{b} \int_{a}^{b}\left(f(x)^{2} g(y)^{2}-2 f(x) g(y) g(x) f(y)+g(x)^{2} f(y)^{2}\right) d x d y \\
& =\int_{a}^{b} f(x)^{2} d x \int_{a}^{b} g(y)^{2} d y-2 \int_{a}^{b} f(x) g(x) d x \int_{a}^{b} f(y) g(y) d y+\int_{a}^{b} g(x)^{2} d x \int_{a}^{b} f(y)^{2} d y \\
& =\|f\|_{2}^{2}\|g\|_{2}^{2}-2\langle f, g\rangle^{2}+\|f\|_{2}^{2}\|g\|_{2}^{2} \\
& =2\|f\|_{2}^{2}\|g\|_{2}^{2}-2\langle f, g\rangle^{2} .
\end{aligned}
$$

Dividing by two on either side, we get the desired result. Now observe that since $(f(x) g(y)-g(x) f(y))^{2} \geq 0$,

$$
0 \leq \frac{1}{2} \int_{a}^{b} \int_{a}^{b}(f(x) g(y)-g(x) f(y))^{2} d x d y=\|f\|_{2}^{2}\|g\|_{2}^{2}-\langle f, g\rangle^{2}
$$

so that

$$
\langle f, g\rangle^{2} \leq\|f\|_{2}^{2}\|g\|_{2}^{2}
$$

Taking square roots,

$$
|\langle f, g\rangle| \leq\|f\|_{2}\|g\|_{2}
$$

6) If $x=0$, then $f_{n}(0)=1$ for all n. Now if $x \in[-1,1] \backslash\{0\}$, then there exists an $N \in \mathbb{N}$ with

$$
\frac{1}{N}<|x|
$$

Then for all $n \geq N, f_{n}(x)=0$, which implies that the pointwise limit of $\left\{f_{n}\right\}_{n=1}^{\infty}$ is f where for $x \in[-1,1]$,

$$
f(x)= \begin{cases}1 & x=0 \\ 0 & \text { otherwise }\end{cases}
$$

Since f is discontinuous at $x=0$, this shows that the pointwise limit is not a continuous function. However, $f_{n} \rightarrow 0$ in mean since

$$
\begin{aligned}
\int_{-1}^{1}\left(f_{n}(x)\right)^{2} d x & =\int_{-1 / n}^{1 / n}(1-|n x|)^{2} d x \\
& =2 \int_{0}^{1 / n}(1-n x)^{2} d x \\
& =2 \int_{0}^{1 / n} 1-2 n x+n^{2} x^{2} d x \\
& =\left.2\left(x-n x^{2}+\frac{n^{2} x^{3}}{3}\right)\right|_{0} ^{1 / n} \\
& =2\left(\frac{1}{n}-\frac{1}{n}+\frac{1}{3 n}\right)=\frac{2}{3 n} \rightarrow 0
\end{aligned}
$$

as $n \rightarrow \infty$. Therefore, $f_{n} \rightarrow 0$ in mean.

