Math 454/554 Assignment 2

Due Thursday, 9/30

1) Show that, for $f \in C([a, b])$, the mapping $\|\cdot\|_{\infty}: C([a, b]) \rightarrow[0, \infty)$ given by

$$
\|f\|_{\infty}=\max _{x \in[a, b]}|f(x)|
$$

is a norm. You may freely use the triangle inequality for real numbers and the fact that a continuous function on a closed interval attains its maximum.
2) (\#4(a), Section 58) For all nonnegative integers n and m and for all $c>0$, establish that

$$
\int_{-c}^{c} \sin \left(\frac{m \pi x}{c}\right) \cos \left(\frac{n \pi x}{c}\right) d x=0
$$

3) If $\gamma_{m}(x)=\sqrt{\frac{2}{c}} \sin \left(\frac{m \pi x}{c}\right)$ for m a natural number, compute the Fourier coefficients $\left\langle 1, \gamma_{m}\right\rangle$. The integral is from $x=0$ to $x=c$.
4) Prove the parallelogram property for $\left(C([a, b]),\|\cdot\|_{2}\right)$; that is, show

$$
\|f+g\|_{2}^{2}+\|f-g\|_{2}^{2}=2\|f\|_{2}^{2}+2\|g\|_{2}^{2}
$$

for all $f, g \in C([a, b])$. Does the same equality hold with $\left(C([a, b]),\|\cdot\|_{\infty}\right)$? Prove or give a counterexample.
5) (\#7 (a), Section 18) Let $s_{N}(x)=\sum_{n=0}^{N} \frac{\sin ((2 n+1) x)}{2 n+1}$ for $0<x<\pi$. Using the equality

$$
2 \sin (A) \cos (B)=\sin (A+B)+\sin (A-B)
$$

and summing both sides of this equality from $n=0$ to $n=N$, derive the formula

$$
2 \sum_{n=0}^{N} \cos ((2 n+1) x)=\frac{\sin (2(N+1) x)}{\sin (x)} .
$$

Due Thursday 10/7

6) Prove that $\left(\frac{1+\cos \left(\frac{\pi x}{c}\right)}{2}\right)^{k}$ can be expressed as a trigonometric polynomial for all natural numbers k; i.e., show that $\left(\frac{1+\cos \left(\frac{\pi x}{c}\right)}{2}\right)^{k}$ can be written as a finite linear combination from the list $\left\{\cos \left(\frac{n \pi x}{c}\right), \sin \left(\frac{m \pi x}{c}\right)\right\}$ where m is a natural number and n is a nonnegative integer. Hint: Mathematical induction.
7) For a real number $p \geq 1$ and $f \in C([0,1])$, define the p-norm of f as

$$
\|f\|_{p}=\left\{\int_{0}^{1}|f(x)|^{p} d x\right\}^{\frac{1}{p}}
$$

Recall the definition $\|f\|_{\infty}=\max _{x \in[0,1]}|f(x)|$. Show that

$$
\|f\|_{p} \leq\|f\|_{\infty}
$$

for all $p \geq 1$, thus in some sense justifying the use of the notation $\|f\|_{\infty}$.
EXTRA CREDIT: Show that, in the previous problem, $\lim _{p \rightarrow \infty}\|f\|_{p}=\|f\|_{\infty}$. You may assume that $\|f\|_{p}$ increases as $p \rightarrow \infty$ for all f.
8) a) With $f, g \in C([a, b])$, show that $M_{g}:\left(C([a, b]),\|\cdot\|_{\infty}\right) \rightarrow(C([a, b]), \| \cdot$ $\left.\|_{\infty}\right)$ defined by $M_{g}(f)=f g$ is a linear map.
b) Prove that M_{g} as defined in part a) is continuous. Hint: It will suffice to show that $f_{n} \rightarrow f$ in $\|\cdot\|_{\infty}$ implies that $g f_{n} \rightarrow f g$ in $\|\cdot\|_{\infty}$.
9) (\#2 Section 30) (Heisenberg's uncertainty principle- almost) Use the linear operators $T=M_{x}$ and $S=\frac{\partial}{\partial x}$ to illustrate the fact that products $S T$ and $T S$ are not always the same.
10) (\#4 Section 30) Show that each of the functions

$$
y_{1}=\frac{1}{x} \text { and } y_{2}=\frac{1}{1+x}
$$

satisfies the nonlinear differential equation

$$
y^{\prime}+y^{2}=0 .
$$

Then show that the sum $y_{1}+y_{2}$ fails to satisfy that equation. Also show that if c is a constant, where $c \neq 0$ and $c \neq 1$, neither $c y_{1}$ nor $c y_{2}$ satisfies the equation.
11) (only mandatory for graduate students) On $[0, c]$, calculate the Fourier cosine and sine series coefficients for $f(x)=1-\frac{x}{c}$. Run the program fseries in MatLab, for example, with data choice (2) for both the cosine (choose the even extension of f) and sine (choose the odd extension of f) series. Do this for $N=8,16$, and 32 in both series. Which series appears to converge to f faster in mean?

