
Math 454/554 Assignment 2 Solutions

1)

• ‖f‖∞ = 0 if and only if f = 0: If f = 0, then ‖f‖∞ = maxx∈[a,b] |f(x)| =
0. Conversely, if ‖f‖∞ = 0, then |f(x0)| ≤ maxx∈[a,b] |f(x)| = ‖f‖∞ =
0 for all x0 ∈ [a, b], hence f(x0) = 0 and so f = 0.

• ‖αf‖∞ = |α|‖f‖∞ for all scalars α:

‖αf‖∞ = max
x∈[a,b]

|αf(x)| = max
x∈[a,b]

|α| · |f(x)| = |α| max
x∈[a,b]

|f(x)| = |α|‖f‖∞.

• ‖f + g‖∞ ≤ ‖f‖∞ + ‖g‖∞: For all f, g ∈ C([a, b]) and x0 ∈ [a, b], we
have by the triangle inequality for real numbers,

|f(x0)+g(x0)| ≤ |f(x0)|+|g(x0)| ≤ max
x∈[a,b]

|f(x)|+ max
x∈[a,b]

|g(x)| = ‖f‖∞+‖g‖∞.

Now since f and g are continuous on [a, b], there is an x0 ∈ [a, b] with
max
x∈[a,b]

|f(x) + g(x)| = |f(x0) + g(x0)| (this result is not necessary to

obtain the conclusion). Therefore,

‖f‖∞ = max
x∈[a,b]

|f(x)| = |f(x0)| ≤ ‖f‖∞ + ‖g‖∞.

2) If m = n ≥ 1, then using the trig identity sin(A) cos(B) = 1
2
(sin(A+B)+

sin(A−B)),∫ c

−c
sin
(nπx

c

)
cos
(nπx

c

)
dx =

1

2

∫ c

−c
sin

(
2nπx

c

)
+ sin(0) dx

=
1

2

∫ c

−c
sin

(
2nπx

c

)
dx

= − c

4nπ
cos

(
2nπx

c

) ∣∣∣c
−c

= − c

4nπ
(cos (2nπ)− (cos (−2nπ))

= − c

4nπ
(cos (2nπ)− (cos (2nπ))

= 0
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since cosine is an even function.
If m 6= n, then again using sin(A) cos(B) = 1

2
(sin(A+B) + sin(A−B)),∫ c

−c
sin
(mπx

c

)
cos
(nπx

c

)
dx =

1

2

∫ c

−c
sin

(
(m+ n)πx

c

)
+ sin

(
(m− n)πx

c

)
dx

= −1

2

(
c

(m+ n)π
cos

(
(n+m)πx

c

)
+

c

(m− n)π
cos

(
(m− n)πx

c

)) ∣∣∣c
−c

= − c

2(m+ n)π
(cos((n+m)π)− cos(−(n+m)π))

− c

2(m− n)π
(cos((n−m)π)− cos(−(n−m)π))

= − c

2(m+ n)π
(cos((n+m)π)− cos((n+m)π))

− c

2(m− n)π
(cos((n−m)π)− cos((n−m)π))

= 0

3)

〈1, γm〉 =

√
2

c

∫ c

0

sin
(mπx

c

)
dx = −

√
2

c

c

πm
cos
(mπx

c

) ∣∣∣c
0

= −
√

2c

πm
(cos(mπ)− cos(0)) = −

√
2c

πm
(cos(mπ)− 1)

= −
√

2c

πm
((−1)m − 1)

=

{
0 m even

4
√
c√

2πm
m odd
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4) Expanding the left-hand side,

‖f + g‖22 + ‖f − g‖22 =

∫ b

a

(f(x) + g(x))2 dx+

∫ b

a

(f(x)− g(x))2 dx

=

∫ b

a

f(x)2 dx+ 2

∫ b

a

f(x)g(x) dx+

∫ b

a

g(x)2 dx

+

∫ b

a

f(x)2 dx− 2

∫ b

a

f(x)g(x) dx+

∫ b

a

g(x)2 dx

= 2

∫ b

a

f(x)2 dx+ 2

∫ b

a

g(x)2 dx

= 2‖f‖22 + 2‖g‖22

For the second part of the question, if we take f(x) = 1 and g(x) = x on
[−1, 1], then

‖f‖∞ = 1, ‖g‖∞ = 1, ‖f + g‖∞ = 2, ‖f − g‖∞ = 2.

So
2‖f‖2∞ + 2‖g‖2∞ = 2 + 2 = 4,

but
‖f + g‖2∞ + ‖f − g‖2∞ = 4 + 4 = 8,

which implies that the property fails to hold in general for ‖ · ‖∞.

5) Multiplying both sides of the desired equality by sin(x), we obtain

N∑
n=0

2 sin(x) cos((2n+ 1)x) = sin(2(N + 1)x).

Employing the trigonometric identity 2 sin(A) cos(B) = sin(A+B)+sin(A−
B), we get

N∑
n=0

2 sin(x) cos((2n+ 1)x) =
N∑
n=0

(sin((2n+ 2)x) + sin(−2nx))

=
N∑
n=0

(sin((2n+ 2)x)− sin(2nx))
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since sine is an odd function. This last is a telescoping series that reduces to
the last term in the series, which is

sin((2N + 2)x) = sin(2(N + 1)x).

6) For k = 1, the result is evidently true. Inductively assume that

(
1 + cos

(
πx
c

)
2

)k

can be expressed as a finite linear combination of trig polynomials. By a ju-
dicious use of zeros for coefficients, we may then suppose that there is an
integer N and real numbers A0, . . . , AN and B1, . . . , BN with(

1 + cos
(
πx
c

)
2

)k

= A0 +
N∑
n=1

(
An cos

(πnx
c

)
+Bn sin

(nπx
c

))
.

Multiplying both sides of this equality by
1 + cos

(
πx
c

)
2

,

(
1 + cos

(
πx
c

)
2

)k+1

=

(
A0 +

N∑
n=1

(
An cos

(πnx
c

)
+Bn sin

(nπx
c

)))
·

(
1 + cos

(
πx
c

)
2

)

= A0

(
1 + cos

(
πx
c

)
2

)
+

1

2

(
N∑
n=1

(
An cos

(πnx
c

)
+Bn sin

(nπx
c

)))

+
1

2

(
N∑
n=1

(
An cos

(πnx
c

)
+Bn sin

(nπx
c

)))
· (cos

(πx
c

)
)

= A0

(
1 + cos

(
πx
c

)
2

)
+

1

2

(
N∑
n=1

(
An cos

(πnx
c

)
+Bn sin

(nπx
c

)))

+
1

2

(
N∑
n=1

(
An cos

(πnx
c

)
cos
(πx
c

)
+Bn sin

(nπx
c

)
cos
(πx
c

)))
.

The only part of this last expression which is not evidently a trig polynomial
is

N∑
n=1

(
An cos

(πnx
c

)
cos
(πx
c

)
+Bn sin

(nπx
c

)
cos
(πx
c

))
. (1)
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However, using the trig identities sin(A) cos(B) = 1
2
(sin(A+B)+sin(A−B))

and cos(A) cos(B) = 1
2
(cos(A+B) + cos(A−B)), we have that

cos
(πnx

c

)
sin
(πx
c

)
=

1

2

(
sin

(
π(n+ 1)x

c

)
+ sin

(
π(n− 1)x

c

))
and

cos
(πnx

c

)
cos
(πx
c

)
=

1

2

(
cos

(
π(n+ 1)x

c

)
+ cos

(
π(n− 1)x

c

))
,

which implies that expression (1) may be written as

N∑
n=1

(
An
2

(
cos

(
π(n+ 1)x

c

)
+ cos

(
π(n− 1)x

c

))
+
Bn

2

(
sin

(
π(n+ 1)x

c

)
+ sin

(
π(n− 1)x

c

)))
and so is a trig polynomial. This ends the proof.

7) Recall again that for all x ∈ [0, 1],

|f(x)| ≤ max
x∈[0,1]

|f(x)| = ‖f‖∞.

Hence, for all 1 ≤ p <∞, |f(x)|p ≤ ‖f‖p∞, and so∫ 1

0

|f(x)|p dx ≤
∫ 1

0

‖f‖p∞ dx = ‖f‖p∞
∫ 1

0

dx = ‖f‖p∞.

Then taking pth roots on both sides,

‖f‖p =
{∫ 1

0

|f(x)|p dx
} 1

p ≤ {‖f‖p∞}
1
p = ‖f‖∞.

EXTRA CREDIT: Come see me if you are interested in a proof.

8) a) If f, g, and h are in C([a, b]) and α, β are scalars, then

Mg(αf+βh) = g(αf+βh) = g(αf)+g(βh) = αgf+βgh = αMg(f)+βMg(h),

which establishes linearity of Mg.
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b) Suppose fn → f in ‖ · ‖∞. This means that for all ε0 > 0, there is an
N ∈ N such that for all n ≥ N ,

‖f − fn‖∞ = max
x∈[a,b]

|f(x)− fn(x)| < ε0.

Then for all x ∈ [a, b],

|Mg(f−fn)(x)| = |g(x)(f(x)−fn(x))| = |g(x)||f(x)−fn(x)| ≤ ‖g‖∞|f(x)−fn(x)|.

Taking the max on either side, we obtain

‖Mg(f − fn)‖∞ ≤ ‖g‖∞‖f − fn‖∞.

Therefore if we choose ε > 0 and ε0 =
ε

‖g‖∞
, there is an N ∈ N such that

for all n ≥ N ,

‖Mg(f − fn)‖∞ ≤ ‖g‖∞‖f − fn‖∞ < ‖g‖∞ ·
ε

‖g‖∞
= ε.

This shows that Mg is continuous in the norm ‖ · ‖∞.

9) If we choose f(x) = 1,

(ST )(f)(x) = (ST )(1) = S(x) = 1.

and
(TS)(f)(x) = (TS)(1) = T (0) = 0.

Therefore, ST 6= TS.

10) If y(x) =
1

x
,

y′ + y2 = − 1

x2
+

1

x2
= 0.

If y(x) =
1

x+ 1
,

y′ + y2 = − 1

(x+ 1)2
+

1

(x+ 1)2
= 0.
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However, if y(x) =
1

x
+

1

x+ 1
,

y′ + y2 = − 1

x2
− 1

(x+ 1)2
+

1

x2
+

2

x(x+ 1)
+

1

(x+ 1)2
=

2

x(x+ 1)

which is never equal to zero. Finally, if c is a real number and y(x) =
c

x
,

y′ + y2 = − c

x2
+
c2

x2
=
c2 − c
x2

,

which is only zero if c = 1 or c = 0. Similarly, if y(x) =
c

x+ 1
,

y′ + y2 = − c

(x+ 1)2
+

c2

(x+ 1)2
=

c2 − c
(x+ 1)2

,

which is again only zero if c = 1 or c = 0.
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