Math 454/554 Assignment 7

Due Thursday, 12/2

1) $\# 2$, Section 72
2) Show that if $u(x)=\sqrt{x} J_{0}(x)$, then u satisfies the differential equation

$$
x^{2} u^{\prime \prime}+\left(x^{2}+\frac{1}{4}\right) u=0
$$

3) \#8, Section 75
4) (only mandatory for graduate students)
a) Use Mathematica or Matlab or whatever you prefer to plot the Bessel function $J_{0}(x)$ on the interval $[0,20]$. In Mathematica, you can use the command "BesselJ." Make a rough estimate of the first three zeros of $J_{0}(x)$.
b) Actually determine the first three zeros. In Mathematica, you can use the command "BesselJZero."
c) If the zeros are z_{1}, z_{2}, and z_{3}, plot $J_{0}\left(z_{1} x\right), J_{0}\left(z_{2} x\right)$, and $J_{0}\left(z_{3} x\right)$ on the interval $[0,1]$.

Due Tuesday, 12/7
5) \#4, Section 85
6) \#2, Section 84 (see the first example in this section)
7) \#4, Section 79
8) (only mandatory for graduate students) Recall that for $f, g, p \in C([a, b])$, we denote by $\langle f, g\rangle_{p}$ the bracket (or inner product)

$$
\langle f, g\rangle_{p}=\int_{a}^{b} f(x) g(x) p(x) d x
$$

Recall from problem \#4 above that $\left\{z_{i}\right\}_{i=1}^{3}$ are the first three positive zeros of J_{0}.
a) Using Mathematica or Matlab or whatever you prefer, calculate the brackets

$$
\left\langle J_{0}\left(z_{i} x\right), J_{0}\left(z_{j} x\right)\right\rangle_{x}
$$

on the interval $[0,1]$ for $1 \leq i, j \leq 3$ and $i \neq j$.
b) Find constants c_{1}, c_{2}, and c_{3} so that

$$
\left\langle\frac{J_{0}\left(z_{i} x\right)}{c_{i}} \frac{J_{0}\left(z_{i} x\right)}{c_{i}}\right\rangle_{x}=1
$$

on the interval $[0,1]$.

