Math 454/554 Final

Directions: Due Wednesday, December 22nd. If you use separation of variables on any problem, be sure to cover all the cases for constants λ .

1) (15 points) a) Compute the Fourier series of the function $f(x) = \cos(\frac{3}{2}x)$ on the interval $[-\pi, \pi]$.

b) (5 points) Use the Weierstrass M-test to show that the series converges uniformly on the interval $[-\pi, \pi]$.

2) (20 points) Suppose transverse displacements z of a membrane stretched over the circle $\rho = 3$ on the xy-plane are independent of the spherical coordinate ϕ , so we may write $z = z(\rho, t)$. Solve the boundary value problem

$$\frac{\partial^2 z}{\partial t^2} = 16 \left(\frac{\partial^2 z}{\partial \rho^2} + \frac{1}{\rho} \frac{\partial z}{\partial \rho} \right)$$

subject to

$$z(3,t) = \frac{\partial z}{\partial t}(\rho,0) = 0, \qquad z(\rho,0) = 1.$$

3) (30 points) Let u(x,t) denote temperature in a homogeneous body on the interval $0 \le x \le 1$ for $t \ge 0$. Use the method of variation of parameters to solve the boundary value problem

$$\frac{\partial u}{\partial t} = 4 \frac{\partial^2 u}{\partial x^2} + t$$

and

$$\frac{\partial u}{\partial x}(0,t) = u(1,t) = u(x,0) = 0.$$

4) (15 points) For $0 \le x \le \pi$, consider the second-order homogeneous differential equation

$$f''(x) + \lambda f(x) = 0$$

Recall that this may be expressed as $Tf = -\lambda f$ where T is the linear map

 $T = D^2$

and D is the derivative with respect to x. Recall also that if u_1, \ldots, u_n is an orthonormal basis for \mathbb{R}^n , any linear map from \mathbb{R}^n to itself may be written as a matrix A, with entries

$$a_{i,j} = Au_j \cdot u_j$$

where " \cdot " is the usual dot product.

a) (8 points) If $\phi_n(x) = \sqrt{\frac{2}{\pi}} \sin(nx)$, calculate the entries $T_{n,m} = \langle T\phi_m, \phi_n \rangle$ for $n, m \ge 1$. Thus, we represent T as an infinite matrix.

b) (7 points) Recall that a linear map S is bounded if $||Sf||_2 \leq C||f||_2$ for all $f \in C([0, \pi])$. Using the matrix representation of T, show that T is not bounded.

5) (15 points) For $x \in \mathbb{R}$, define the decimal part of $x, \langle x \rangle$, to be

$$\langle x \rangle = x - \lfloor x \rfloor$$

where |x| is the greatest integer smaller than or equal to x.

a) By choosing a suitable interval, calculate a Fourier series for $f(x) = \langle x \rangle^2 - \langle x \rangle$. *Hint:* wouldn't it be nice if $\langle x \rangle = x$...

b) Using the series from part a), find a value for $\sum_{n=1}^{\infty} \frac{1}{n^4}$.