Math 454/554 Midterm

IN-CLASS PORTION

1) a) For $u=u(x, y, z, t)$, define the Laplacian ∇^{2} of u.
b) State the formula for the Laplacian in cylindrical coordinates. You do not need to show any work, just the formula.
2) Let $u=u(x, y, z, t)$ denote temperatures in a homogeneous body with no internal heat source or sink.
a) What does the phrase "steady-state" mean in terms of u and its partial derivatives?
b) What does the heat equation reduce to in the steady-state case?
c) Suppose u is independent of z, so that $u=u(x, y, t)$. In terms of u and its partial derivatives, what boundary condition ensues if the medium is insulated along the x-axis?
d) Suppose further that u is independent of y and z, so that $u=u(x, t)$. If $0 \leq x \leq \pi$ and $t \geq 0$, give an example of boundary conditions on the spatial variable x that will ensure a Fourier cosine series occurs in the solution for u.
3) a) What does the notation $C([a, b])$ stand for?
b) For f and g in $C([a, b])$, define $\langle f, g\rangle$ on the interval $[a, b]$.
c) On the interval $[0, \pi]$, give an example of two nonzero functions f and g with $\langle f, g\rangle=0$, if such an example exists. Support your example with calculations.
4) a) For a given sequence $\left\{\phi_{n}\right\}_{n=1}^{\infty} \subset C([a, b])$, what does it mean for $\left\{\phi_{n}\right\}_{n=1}^{\infty}$ to be orthonormal?
b) State Bessel's Inequality for $f \in C([a, b])$ and an orthonormal sequence $\left\{\phi_{n}\right\}_{n=1}^{\infty} \subset C([a, b])$.
c) Give an example of an infinite orthonormal sequence in $C([0, c])$.
d) Use Bessel's Inequality (or any other method at your disposal) to demonstrate that for all $f \in C([0, c])$,

$$
\lim _{n \rightarrow \infty} \int_{0}^{c} f(x) \cos \left(\frac{\pi n x}{c}\right) d x=0
$$

Math 454/554 Midterm

TAKE HOME PORTION

1) (16 points) Let $u(x, t)$ denote temperature in a homogeneous body on the interval $0 \leq x \leq 1$ for $t \geq 0$. If $u(x, t)$ satisfies the heat equation

$$
\frac{\partial u}{\partial t}=5 \frac{\partial^{2} u}{\partial x^{2}}
$$

and

$$
u(x, 0)=x^{2}, \frac{\partial u}{\partial x}(0, t)=\frac{\partial u}{\partial x}(1, t)=0
$$

find the general solution for $u(x, t)$.
2) (16 points) Let $u(\rho, \phi)$ denote steady-state temperature in a homogeneous body for the cylindrical coordinates $1 \leq \rho \leq 9$ and $0 \leq \phi \leq \frac{\pi}{2}$. If $u(\rho, \phi)$ satisfies the heat equation

$$
\frac{\partial^{2} u}{\partial \rho^{2}}+\frac{1}{\rho} \frac{\partial u}{\partial \rho}+\frac{1}{\rho^{2}} \frac{\partial^{2} u}{\partial \phi^{2}}=0
$$

and

$$
u(\rho, 0)=u\left(\rho, \frac{\pi}{2}\right)=u(1, \phi)=0, u(9, \phi)=13
$$

find the general solution for $u(\rho, \phi)$. The Cauchy-Euler transformation $\rho=e^{s}$, which converts

$$
A \rho^{2} y^{\prime \prime}(\rho)+B \rho y^{\prime}(\rho)+C y(\rho)=0
$$

into

$$
A \frac{\partial^{2} y}{\partial s^{2}}+(B-A) \frac{\partial y}{\partial s}+C y=0
$$

where A, B, and C are constants, may be useful to you.
3) a) (5 points) Given $f(x)=x$, compute the Fourier series for f on the interval $[-2,2]$.
b) (3 points) Show that at the point $x_{0}=2$, the Fourier series for $f(x)=x$ on $[-2,2]$ does not converge to $f\left(x_{0}\right)$.
c) (5 points) Prove that the Fourier series for $f(x)=x$ on the interval $[-2,2]$ converges to f in mean. You may use the fact that

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}
$$

4) (5 points- and a bit more of a challenge) Let p and q be natural numbers, with $p \leq q$. Show that for all real numbers $0<x<\pi$ and all choices of p and q,

$$
\left|\sum_{p \leq n \leq q} e^{i n x}\right| \leq \csc \left(\frac{x}{2}\right) .
$$

Recall that $e^{i n x}=\cos (n x)+i \sin (n x)$ and that the absolute value of a complex number $a+b i$ is $\sqrt{a^{2}+b^{2}}$ (a,b are real numbers).

