
Math 454/554 Notes 12/9

0.1 Broadening Our Horizons

For f ∈ C([−π, π]), we have

f(x) =
A0

2
+
∞∑
n=1

(An cos (πnx) +Bn sin (πnx))

in mean. Recall that

cos(nx) =
einx + e−inx

2
and

sin(nx) =
einx − e−inx

2i
.

Substituting, we obtain

f(x) =
A0

2
+
∞∑
n=1

(
An

(
einx + e−inx

2

)
+Bn

(
einx − e−inx

2i

))
=
A0

2
+
∞∑
n=1

(
An

(
einx + e−inx

2

)
− iBn

(
einx − e−inx

2

))
=
A0

2
+
∞∑
n=1

((
An − iBn

2

)
einx +

(
An + iBn

2

)
e−inx

)
in mean. Regarding B0 = 0 and setting Cn =

An − iBn

2
, we obtain

f(x) =
∞∑
−∞

cne
inx

in mean.
It is then easy to observe that if n 6= m,

〈einx, eimx〉 =

∫ π

−π
einxe−imx dx = 0.

We may then recover

Cn =
1

2π

∫ π

−π
f(x)e−inx dx

using orthogonality.
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0.2 The Discrete Fourier Transform

Applications are in signal processing, quantum computation, mechanical
analysis, stock analysis, neurobiology (MRI machines). You may also see
it referred to as the Quantum Fourier Transform.

We shall only consider finite Fourier series, written as exponentials. As
such, we will translate and always start at n = 0, writing

f(x) =
k−1∑
n=0

cne
inx.

Note that there are now no issues of convergence; this is just pointwise equal-
ity. By periodicity of f , we may work on the interval [0, 2π] instead of [−π, π].

Suppose then that we would like to evaluate f at equally spaced intervals
of length 2π

k
. Later, we will discuss why one would want to do this. We

obtain k numbers (y0, y1, . . . , yk−1 where yj = f(2πj
k

), for 1 ≤ j ≤ k − 1 and
y0 = f(0).

Example: Let k = 4 and f(x) = c0 + c1e
ix + c2e

2ix + c3e
3ix. Then

y0 = f(0) = c0 + c2 + c1 + c3; y1 = f(
π

2
) = c0 + ic1 − c2 − ic3

y2 = f(π) = c0 − c1 + c2 − c3; y3 = f(
3π

2
) = c0 − ic1 − c2 + ic3.

Now suppose we are given y0, y1, . . . , yk−1. Can we find c0, c1, . . . , ck−1

with

f(x) =
k−1∑
n=0

cne
inx

and yj = f(2πj
k

)? The answer is yes, by tedious elimination, but let’s try a
better way.

Example: Suppose y0 = 1, y1 = 0, y2 = 1, and y3 = 0. We then need
c0, c1, c2, and c3 with

1 = c0 + c1 + c1 + c3; 0 = c0 + ic1 − c2 − ic3

1 = c0 − c1 + c2 − c3; 0 = c0 − ic1 − c2 + ic3.
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Write the system of equations in matrix form:
1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i




c0
c1
c2
c3

 =


1
0
1
0

 .

If we could invert the 4 × 4 matrix, we’d have an easy way to solve for
c0, c1, c2, and c3.

Notation: If A = (an,m)kn,m=1 is an k × k matrix with complex coefficients,
define A∗ = (bn,m)kn,m=1 where

bn,m = am,n.

In words, you make the rows of A into columns, the nth row going to the
nth column, then take complex conjugates of all entries.

Example within an Example: If A =

(
i 2 + 3i
−5 7− 9i

)
, then

A∗ =

(
−i −5

2− 3i 7 + 9i

)
.

Now let

A =


1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

 .

Then

A∗ =


1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i

 .

One can check that

A∗A =


4 0 0 0
0 4 0 0
0 0 4 0
0 0 0 4

 .
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Therefore, if we want
1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i




c0
c1
c2
c3

 =


1
0
1
0

 ,

multiplying both sides by A∗, we get
4c0
4c1
4c2
4c3

 =


1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i




1
0
1
0

 .

Now all we need do is compute
1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i




1
0
1
0

 =


2
0
2
0

 .

Then by equating components, c0 = c2 =
1

2
and c1 = c3 = 0.

Definition: (Discrete Fourier Transform) The Discrete Fourier Transform
on a k-element set of complex numbers is given by the matrix Fk = (an,m)kn,m=1

where
an,m = ω

(n−1)(m−1)
k

and ωk = e
2πi
k .

Under scaling by 1√
k
, Fk is a unitary transformation (a complex matrix

U is unitary if U∗U = I where I is the identity matrix).
However, for a random y0, y1, . . . yk, the k2 multiplications involved in the

Discrete Fourier Transform might be nasty. For computational efficiency,
we’d like fewer multiplications.

0.3 The Fast Fourier Transform (FFT)

Note: This is just an algorithm for computing the Discrete Fourier Trans-
form, NOT a transform in its own right. The prescription here is lifted from
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Strang’s Linear Algeba and Applications for k = 2j where j ≥ 2, simulating
bits in a computer. Strang assures us that a minor modification will work
for k a composite integer. For k prime, we have to do something completely
different.

We want to find y0, y1, . . . , yk−1 given c0, c1, . . . , ck−1. First, we shall see
a description of the algorithm in general, then work an example.

FFT Step 1: Apply the permutation matrix P2j that rearranges


c0
c1
...

c2j−1

 as



c0
c2
...

c2j−2

c1
c3
...

c2j−1


.

We can check that

(P2j)n,m =

{
δn, 1+m

2
, if 1 ≤ n ≤ 2j−1

δ
n, 2

j−1+m
2

, if 2j−1 < n ≤ 2j.

FFT Step 2: Apply F2j−1 to the vectors

c′′ =


c0
c2
...

c2j−2

 and c′′′ =


c1
c3
...

c2j−1

 .

Set F2j−1c′′ = y′′ and F2j−1c′′′ = y′′′. Solve for y′′ and y′′′, then set as the
column vector

y′ =

(
y′′

y′′′

)
.

FFT Step 3: Reconstruct y from y′ by y = B2jy
′ where

B2j =

(
I2j−1 D2j−1

I2j−1 −D2j−1

)
.
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Here, I2j−1 is the 2j−1×2j−1 identity matrix and D2j−1 is the diagonal matrix
with

(D2j−1)n,m =

{
0 if n 6= m

ωn−1
2j

if n = m.

In matrix notation, the FFT is

F2j = B2j

(
F2j−1 0

0 F2j−1

)
P2j .

Observe that replacing F2j with two copies of F2j−1 gives 2j−1 multiplica-
tions instead of 22j. In applying the FFT, repeat steps 1 and 2 until you have
descended to F2, then solve and reconstruct. This will end up with about
j ∗ 2j−1 multiplications instead of 22j. For j large, this is significant.

Example: Solve

F4


1
2
3
4

 =


y0

y1

y2

y3


using the FFT.

Step 1: Rearrange 
1
2
3
4

 as


1
3
2
4


by applying the matrix

P4 =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 .

Set c′′ =

(
1
3

)
and c′′′ =

(
2
4

)
.

Step 2: Solve F2c
′′ = y′′ and F2c

′′′ = y′′′. We have

y′′ =

(
1 1
1 −1

)(
1
3

)
=

(
4
−2

)
6



and

y′′′ =

(
1 1
1 −1

)(
2
4

)
=

(
6
−2

)
.

Set

y′ =

(
y′′

y′′′

)
=


4
−2
6
−2

 .

Step 3: Reconstruct y from y′ by B4y
′ = y where

B4 =


1 0 1 0
0 1 0 i
1 0 −1 0
0 1 0 −i

 .

Hence,

y = B4y
′ =


1 0 1 0
0 1 0 i
1 0 −1 0
0 1 0 −i




4
−2
6
−2

 =


10

−2− 2i
−2

−2 + 2i

 .

0.4 The Fourier Transform

Suppose that f ∈ C((−∞,∞)), which is the vector space of all continuous
functions. We may regard f as complex-valued. If∫ ∞

−∞
|f(x)| dx <∞,

we define the Fourier Transform F of f to be

F(f)(x) =

∫ ∞
−∞

f(t)e−itx dt.

If, in addition,

∫ ∞
−∞
|f(x)|2 dx <∞, we can check using Fubini’s Theorem

that ∫ ∞
−∞
|F(f)(x)|2 dx =

∫ ∞
−∞
|f(x)|2 dx;
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that is, the Fourier Transform is an isometry on the L2 level. There are other
versions that differ by the addition of a few constants in strategic places.

The Fourier Transform of f is also commonly written as f̂ , a notation
which we shall now adopt. In fact, using the same definition, we can extend
the Fourier Transform to functions which are not everywhere continuous, as
the following example shows.

Example: Let

f(x) =

{
1 if − 1 ≤ x ≤ 1

0 if|x| > 1.

It is immediate that f̂(0) = 2. Then if x 6= 0,

f̂(x) =

∫ ∞
−∞

f(x)e−itx dt =

∫ 1

−1

e−itx dt =
e−itx

−ix

∣∣∣1
−1

=
eitx − e−itx

ix
=

2 sin(x)

x
.

Note that lim
x→0

2 sin(x)

x
= 2, so that we have “fixed” the discontinuity at

x = 0. Therefore, the Fourier Transform of a discontinuous function can be
continuous.

As an application, we can then compute an impossible-looking integral
using the fact that the Fourier transform is an isometry on the L2 level.
Again let

f(x) =

{
1 if − 1 ≤ x ≤ 1

0 if|x| > 1.

Then∫
x 6=0

sin2(x)

x2
dx =

∫
x 6=0

1

4
|f̂(x)|2 dx =

1

4

∫
x 6=0

|f(x)|2 dx =
1

4

∫ 1

−1

1 dx =
1

2
.

0.5 The Nyquist Theorem

This theorem is also attributed to Shannon. For simplicity, we assume f ∈
C((−∞,∞)), though this assumption is not necessary. Suppose

∫ ∞
−∞
|f(x)| dx <

∞.

Definition: f is band-limited with bandwidth B if there is a real number B
such that

f̂(x) = 0 if |x| > B.
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The Nyquist Theorem: Let f be band-limited with bandwidth B. Then
f is completely determined by the values

f
( n

2B

)
where n ∈ Z, |n| ≤ B.

The Nyquist Theorem is the tool by which we pass from continuous to
discrete data. A later version of these notes may include the proof.
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