
Math 454/554 Notes

Recall the heat equation in one temporal and one spatial variable:

ut = kuxx

where k is a positive constant, 0 ≤ x ≤ c, and c 6= 0. We also have the
boundary conditions ux(0, t) = ux(c, t) = 0 and u(x, 0) = f(x) for some
nonconstant function f . Disregarding the value of f , we found that the
family of functions

{A0 + e−
n2π2

c2
tAn cos

(πnx
c

)
}n∈N

satisfies both the heat equation and the other boundary conditions. We also
observed that any sum

A0 +
N∑
n=1

e−
n2π2

c2
tAn cos

(πnx
c

)
also satisfies as well. Applying the remaining boundary condition, we see
that

f(x) = A0 +
N∑
n=1

An cos
(πnx

c

)
.

Now we let m be a nonnegative integer and multiply both sides of this equa-
tion by cos

(
πmx
c

)
. Integrating the result, we have that∫ c

0

f(x) cos
(πmx

c

)
dx = A0

∫ c

0

cos
(πmx

c

)
dx+

N∑
n=1

∫ c

0

An cos
(πnx

c

)
cos
(πmx

c

)
dx.

Now
∫ c

0
cos
(
πmx
c

)
dx = 0 unless m = 0, in which case the value of the integral

is c. This result tells us that

A0 =
1

c

∫ c

0

f(x) dx.

Note that if n = m,∫ c

0

cos2
(πmx

c

)
dx =

∫ c

0

1 + cos
(

2mπx
c

)
2

dx =

(
x

2
+
c sin

(
2mπx
c

)
4mπ

)∣∣∣c
0

=
c

2
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One of your homework problems is to show that if n 6= m,∫ c

0

An cos
(πnx

c

)
cos
(πmx

c

)
dx = 0.

Therefore, if n > 0,

An =
2

c

∫ c

0

f(x) cos
(πmx

c

)
dx.

Question: What if An 6= 0 for infinitely many n?

Even a very simple example like f(x) = x has this property. Then no
finite sum A0 +

∑N
n=1An cos

(
πnx
c

)
can be equal to f(x) since for m > N ,

∫ c

0

(
A0 +

N∑
n=1

An cos
(πnx

c

))
cos
(πmx

c

)
dx = 0.

Therefore, we are forced to consider an infinite sum! The only question is
what is meant by the expression

A0 +
∞∑
n=1

An cos
(πnx

c

)
,

i.e., in what sense does the sum converge? There are three different kinds of
convergence we will discuss.

1. Pointwise: fn → f pointwise on [a, b] if for all ε > 0 and each x ∈ [a, b],
there is an N = N(x, ε) such that |fn(x)− f(x)| < ε when n ≥ N .

2. Uniform: fn → f uniformly on [a, b] if for all ε > 0, there is an
N = N(ε) such that |fn(x) − f(x)| < ε when n ≥ N and for all
x ∈ [a, b]. That is, the value N is independent of the choice of x.

3. Mean (or L2): fn → f in mean (or L2) if for all ε > 0, there is an N
such that ∫ b

a

|fn(x)− f(x)|2 dx < ε2

for all n ≥ N .
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Note that uniform convergence is the strongest and implies convergence
both pointwise and in mean. However, we will see examples of sequences
of continuous functions on a closed interval that converge pointwise but not
uniformly, that converge in mean but not pointwise (to the same function),
and that converge pointwise but not in mean. You’ll find examples of the first
two on the homework, and we’ll address the last later. Pointwise convergence,
though nice, is too weak in general to give us what we want, so we will
concentrate on the other two types of convergence.

First, since we would like A0 = 1
c

∫ c
0
f(x) dx to exist, it makes sense

to assume that f is continuous on [0, c] since then the integral exists. We
will weaken this hypothesis a bit in the future, though. Now the set of all
continuous, real-valued functions on [0, c] is a vector space over R since the
sum of two continuous functions is again continuous and any multiple of a
continuous function is continuous. Denote this vector space by C([0, c]).

Recall (or see for the first time) the following facts about uniform con-
vergence. Suppose {fn}n∈N and f are in C([0, c]). Set sN(x) =

∑N
n=1 fn(x).

If sN → f uniformly, then:

• If g is in C([0, c]), then sNg → fg uniformly on [0, c];

• lim
N→∞

∫ c

0

sN(x) dx =

∫ c

0

lim
N→∞

sN(x) dx =

∫ c

0

f(x) dx

Without the hypothesis of uniform convergence, we have

• If fn is differentiable on (0, c) for all n and {s′N}∞N=1 converges uniformly,
then if sN(x0) → f(x0) for a single x0 in [0, c], lim

N→∞
s′N(x) = f ′(x) for

all 0 < x < c.

So if we can then prove that sN(x) = A0 +
∑N

n=1An cos
(
πnx
c

)
converges

to f uniformly, then An = 2
c

∫ c
0
f(x) cos

(
πmx
c

)
dx for n > 0, and we are

justified in writing

f(x) = A0 +
∞∑
n=1

An cos
(πnx

c

)
.

It will then be the case that if f ′n → f ′ uniformly,

u(x, t) = A0 +
∞∑
n=1

e−
n2π2

c2
tAn cos

(πnx
c

)
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is well-defined and satisfies the heat equation with the boundary conditions
we have imposed. With some additional assumptions on the function f ,
we will obtain uniform convergence at a further point in the course. Note
that WITHOUT these conditions, it is not always even true that sN → f
pointwise on [0, c]. However, sN → f in mean regardless, which is one of
many reasons why we consider this type of convergence.

Using uniform and mean convergence, we can define two norms on C([0, c]).
Recall that a norm would be a map ‖ · ‖ from C([0, 1]) to the nonnegative
real numbers satisfying, for all f and g in C([0, 1]),

• ‖f‖ = 0 if and only if f = 0,

• ‖αf‖ = |α| · ‖f‖ for α ∈ R,

• ‖f + g‖ ≤ ‖f‖+ ‖g‖ (triangle inequality).

We define ‖f‖∞ = maxx∈[0,c] |f(x)| and ‖f‖2 =
{∫ c

0
|f(x)|2 dx

} 1
2
. The

continuity of f plus the compactness of [0, c] guarantees that the max in the
first quantity exists and that the integral in the second quantity is finite.

That the properties of a norm are satisfied by ‖ · ‖∞ is more or less im-
mediate. It is a neat fact that C([0, c]) with this norm is both complete
(every Cauchy sequence converges) and closed (every convergent sequence
from C([0, c]) has its limit in C([0, c])). The latter follows from the proper-
ties of uniform continuity. In ‖ · ‖2, it is certainly not true that the limit of
continuous functions is again continuous- see the homework for a counterex-
ample.

The only nontrivial part of verifying that ‖ · ‖2 is a norm is to show
‖f + g‖2 ≤ ‖f‖2 + ‖g‖2. This goes by the name Minkowski’s Inequality. It
will be a bit easier to prove after defining the inner product, 〈f, g〉, as follows:

〈f, g〉 =

∫ c

0

f(x)g(x) dx.

Note that ‖f‖22 = 〈f, f〉. Using this,

‖f+g‖22 =

∫ c

0

(f+g)2 dx =

∫ c

0

f(x)2+2f(x)g(x)+g(x)2 dx = ‖f‖22+2〈f, g〉+‖g‖22

and
(‖f‖2 + ‖g‖2)2 = ‖f‖22 + 2‖f‖2‖g‖2 + ‖g‖22,
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which tell us we only need to show that 〈f, g〉 ≤ ‖f‖2‖g‖2. You will establish
a (slightly) stronger inequality

|〈f, g〉| ≤ ‖f‖2‖g‖2,

called the Cauchy-Schwarz inequality, in your homework. This will then show

‖f + g‖22 ≤ (‖f‖2 + ‖g‖2)2

and Minkowski’s Inequality will be satisfied for ‖ · ‖2 by taking square roots.
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