Math 454/554 Notes 9/28

Damage Control: Contrary to what was stated towards the end of class
last time, the functions cos (%) and sin (”—’ZI) are not always orthogonal on
[0, c]. For example,
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/07r sin(2x) cos(z) dr = /07r sin(3x) + sin(z) dx
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In fact, the set {¢,}52, is a complete orthonormal set on [0, c]. We will
prove this in a circuitous fashion. First, we expand our scope to the interval
[—c, c] and observe that the system {®}°°, U {l,,}>°_; defined on [—c, ] by

T

is indeed orthonormal. Calculations similar to what we obtained in the [0, ¢|
case show that {®,}°°, and {I',,,}5°_, are each orthonormal sets, and this
time, your homework WILL show that

/ sin <m7m;> cos <@) dzr = 0.
c c
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for all natural numbers m and all nonnegative integers n. We then arrive at
a definition.

Definition: The Fourier Series of a continuous function f on the interval
[—c, c] is the series

ap + Z(anq)n + bnrn)
n=1

where a, = (f, ®,) and b, = (f,I',,) and the convergence is in mean.
Written another way, this is

o

% + ; (An cos (?) + B,, sin (?))

where Ag = 2a¢ and A,, = \/izan, B, = \/%bn for n € N.
We shall then employ the following theorem to show that the Fourier
orthonormal system is complete on [—c, ¢].

Completeness Theorem: Let {1,}>2, be an orthonormal sequence in
C([a,b]). The following are equivalent:

e For every ¢ > 0 and all f € C([a,b]), there exists a g in the linear
span of the ¢,,’s with

If — g2 < eo.
o ) (fihn)? = |fII3 for all f € C([a,b]).
n=0

Some comments before the proof.
1. The second equivalence is called Parseval’s Formula.

2. A function g is in the linear span of the 1,,’s if there are nonnegative
integers ng, ..., n; and scalars «; for 0 < i < k with

g(x) = Z i, ().

Note that the sum is finite and that, as a matter of definition, a; =

<g71/]ni>'



3. The difficulty is that it is not a priori the case that we can choose

We shall now prove the easy direction of the theorem. The harder direc-
tion is beyond the scope of this course.

PROOF: Suppose Parseval’s Formula is satisfied for all f € C([a,b]). Then
given such an f and gy > 0, there is an N € N such that

N

Hng - Z(f? wn>2 < 6(2)'
n=0
N
Set g = Z( f,¥n)thn. Recall from the proof of Bessel’s Inequality that

n=0

N

1F = gli3 = 1£13 = llgll3 = I1£113 = D _(f n)? < 5.
n=0

By taking square roots of both sides, we then arrive at

If — g2 < eo.

This ends the proof of the easy direction.
Now we shall show how the first equivalence in the theorem is satisfied
for all f € C([—c,¢]). In fact, we will do better and show the following:

Theorem: For every ¢ > 0 and f € C([—c¢, ¢]), there is a g in the linear span
of the the Fourier system with

If = gllo <&

We call such a g a trigonometric polynomial. The proof is appropriated
from Rudin’s Real and Compler Analysis and is, like most results in that
text, pure magic.

PROOF: Define
1+ cos(%F) ) g

Qr(z) = cx < 5
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where k£ € N and
2c

c 1+cos(™F) k ’
ffc ( 2 ) dx

M k:
In your homework, you will show that <H%S()) is a trig polynomial.

C —

Now by definition, Qic ffc Qr(x) dx = 1, as the constant ¢, is chosen precisely
to make this true. Since —1 < cos(%F), we have that Qi(z) > 0 for all
x € [—c, c]. Note also cos(™2) is an even function, and so Qg(x) is even for
all £ > 1. Hence,

k k
G C<1+COS(%)) e G C(l—l—cos(%)) o
0
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Using the fact that 1 > sin (Z£),

(& 1 T k C 1 T k
c Jo 2 c Jo 2 c

1+COS(%)

5, we may evaluate this last integral

By using the substitution u =
as
1 QCk

2k _ %
o wk+1)

1dex:% w1
T Jo T \k+1

and so 1 > %, which implies

m(k+1)

1<
- 20k

Note the derivative of Q). is

Qo) = - LD g, (7T

C  Cp—1 c

and both @;_; and sin (%) are positive on [0, ¢]. Therefore, @}, <0 on [0, ¢],
and so @y is decreasing on [0, ¢].



Since @)y, is decreasing on [0, ¢], then if § < z < ¢,

COS w8 F
Qu(z) < Qu(d) = ¢ (M)

2
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As 6 > 0, we have that cos (?) < 1, and so ———* < 1. Therefore,
Ccos fut)
regardless of the value of 9, if we set a = #, we have for all 6 < z < ¢,
, , T™. (k+1) = . 1
< = — = — —_— =
i, @) < iy @) =5 i "o =5 i T =0 )

by I’'Hopital’s rule. The fact that @) is even for all k implies that this result
extends to show that

Jim Qr(—2z) < Jim Qr(d) =0
forall0 <d <z <ec.

Unfortunately, the Q);’s are not quite good enough to prove what we want
since they have no obvious relationship to our given function f € C(|—c,c]).
For the moment, extend f to all real numbers by setting h(z + 2nc) = f(x)
for all integers n and = € [—c¢, ¢). This new function may have no resemblance
to the original f outside the interval [—c,¢), but since we only care about

the behavior of f inside the interval, this is justified. We further define, for
all real numbers x,

al) = 5 [ bz = p)Quly) dy

—C

for k£ > 1. Then by substituting u =z — ¥,

gi(z) = %/C h(z —y)Qr(y) dy = L[ h(u)Qr(x — u) du.

—c 20 x+c



Now the integrand is a 2¢ periodic function over an interval of length 2¢, and
so it follows that

/ﬂcx_ch(u)Qk(x —u) du = /c_ch(u)Qk(:z: —u) du = — /c h(w)Qu( — ) du.

+c -¢
Hence,
() = - - )Qu(r—u) du = / W) du =5 [ Fu)Qule—u) du

by the definition of A.
Recall that the Q’s are trig polynomials, so for each k, there are non-

negative integers noy,...,n;, and scalars oo, ..., % and Big, ..., Bk
satisfying
& TN T TN 1T
Qi(x) = agr + > (ai,k cos ( ) + Bixsin ( )) :
c c
i=1

We may assume the same index set for both 3’s and a’s by a judicious use
of zeros in the coefficients. Then

() = Qi / F()Qu(e — u) du

1

=1

=5 f( Jaox du

1< e i i i i

+ — E / <0zi,k (cos <7m 7;93:) Cos (7rn ku) + sin <7m 7;93:) sin <7m ku))) du
2c —J- c c c c
1 [ ; ; i i

+ — g / ﬁi,k <(Sin (Wn kx) CoS (M) — COS <7m kx) sin (M>)) du
2c — ) c c c c

where we have used the identities cos(A— B) = cos(A) cos(B)+sin(A) sin(B)
and sin(A — B) = sin(A) cos(B) — cos(A) sin(B). Rewriting a single integral,

¢ ™, T ™, U . (T ETY . (T U
o, | cos cos + sin sin du
c c c c
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™, T ¢ ™, U . (TN )T C (TN Ru
= @ |, COS cos | —>— | du |+ sin sin | —— ) du | .
c e c c e c

Since each integral with respect to u is just another constant, this shows
that any individual integral in the first sum can be written as a trig poly-
nomial, and a similar tedious calculation will show the same for the second
sum. We conclude that g is a trig polynomial.



