Math 454/554 Notes $9 / 28$

Damage Control: Contrary to what was stated towards the end of class last time, the functions $\cos \left(\frac{\pi n x}{c}\right)$ and $\sin \left(\frac{\pi n x}{c}\right)$ are not always orthogonal on $[0, c]$. For example,

$$
\begin{aligned}
\int_{0}^{\pi} \sin (2 x) \cos (2 x) d x & =\frac{1}{2} \int_{0}^{\pi} \sin (4 x) d x \\
\left.\left(\frac{\cos (4 x)}{4}\right)\right|_{0} ^{\pi} & \\
& =0
\end{aligned}
$$

but

$$
\begin{aligned}
\int_{0}^{\pi} \sin (2 x) \cos (x) d x & =\frac{1}{2} \int_{0}^{\pi} \sin (3 x)+\sin (x) d x \\
& =\left.\frac{1}{2}\left(\frac{-\cos (3 x)}{3}-\cos (x)\right)\right|_{0} ^{\pi} \\
& =\frac{4}{3}
\end{aligned}
$$

In fact, the set $\left\{\phi_{n}\right\}_{n=0}^{\infty}$ is a complete orthonormal set on $[0, c]$. We will prove this in a circuitous fashion. First, we expand our scope to the interval $[-c, c]$ and observe that the system $\{\Phi\}_{n=0}^{\infty} \cup\left\{\Gamma_{m}\right\}_{m=1}^{\infty}$ defined on $[-c, c]$ by

$$
\begin{gathered}
\Phi_{0}(x)=\frac{1}{\sqrt{2 c}} \\
\Phi_{n}(x)=\frac{1}{\sqrt{c}} \cos \left(\frac{\pi n x}{c}\right), n \geq 1 \\
\Gamma_{n}(x)=\frac{1}{\sqrt{c}} \sin \left(\frac{\pi m x}{x}\right)
\end{gathered}
$$

is indeed orthonormal. Calculations similar to what we obtained in the $[0, c]$ case show that $\left\{\Phi_{n}\right\}_{n=0}^{\infty}$ and $\left\{\Gamma_{m}\right\}_{m=1}^{\infty}$ are each orthonormal sets, and this time, your homework WILL show that

$$
\int_{-c}^{c} \sin \left(\frac{m \pi x}{c}\right) \cos \left(\frac{n \pi x}{c}\right) d x=0
$$

for all natural numbers m and all nonnegative integers n. We then arrive at a definition.

Definition: The Fourier Series of a continuous function f on the interval $[-c, c]$ is the series

$$
a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \Phi_{n}+b_{n} \Gamma_{n}\right)
$$

where $a_{n}=\left\langle f, \Phi_{n}\right\rangle$ and $b_{n}=\left\langle f, \Gamma_{n}\right\rangle$ and the convergence is in mean.
Written another way, this is

$$
\frac{A_{0}}{2}+\sum_{n=1}^{\infty}\left(A_{n} \cos \left(\frac{\pi n x}{c}\right)+B_{n} \sin \left(\frac{\pi n x}{c}\right)\right)
$$

where $A_{0}=2 a_{0}$ and $A_{n}=\frac{1}{\sqrt{c}} a_{n}, B_{n}=\frac{1}{\sqrt{c}} b_{n}$ for $n \in \mathbb{N}$.
We shall then employ the following theorem to show that the Fourier orthonormal system is complete on $[-c, c]$.

Completeness Theorem: Let $\left\{\psi_{n}\right\}_{n=0}^{\infty}$ be an orthonormal sequence in $C([a, b])$. The following are equivalent:

- For every $\varepsilon_{0}>0$ and all $f \in C([a, b])$, there exists a g in the linear span of the ψ_{n} 's with

$$
\|f-g\|_{2}<\varepsilon_{0}
$$

- $\sum_{n=0}^{\infty}\left\langle f, \psi_{n}\right\rangle^{2}=\|f\|_{2}^{2}$ for all $f \in C([a, b])$.

Some comments before the proof.

1. The second equivalence is called Parseval's Formula.
2. A function g is in the linear span of the ψ_{n} 's if there are nonnegative integers n_{0}, \ldots, n_{k} and scalars α_{i} for $0 \leq i \leq k$ with

$$
g(x)=\sum_{i=0}^{k} \alpha_{i} \psi_{n_{i}}(x) .
$$

Note that the sum is finite and that, as a matter of definition, $\alpha_{i}=$ $\left\langle g, \psi_{n_{i}}\right\rangle$.
3. The difficulty is that it is not a priori the case that we can choose $\alpha_{i}=\left\langle f, \psi_{n_{i}}\right\rangle$!

We shall now prove the easy direction of the theorem. The harder direction is beyond the scope of this course.

PROOF: Suppose Parseval's Formula is satisfied for all $f \in C([a, b])$. Then given such an f and $\varepsilon_{0}>0$, there is an $N \in \mathbb{N}$ such that

$$
\|f\|_{2}^{2}-\sum_{n=0}^{N}\left\langle f, \psi_{n}\right\rangle^{2}<\varepsilon_{0}^{2}
$$

Set $g=\sum_{n=0}^{N}\left\langle f, \psi_{n}\right\rangle \psi_{n}$. Recall from the proof of Bessel's Inequality that

$$
\|f-g\|_{2}^{2}=\|f\|_{2}^{2}-\|g\|_{2}^{2}=\|f\|_{2}^{2}-\sum_{n=0}^{N}\left\langle f, \psi_{n}\right\rangle^{2}<\varepsilon_{0}^{2}
$$

By taking square roots of both sides, we then arrive at

$$
\|f-g\|_{2}<\varepsilon_{0}
$$

This ends the proof of the easy direction.
Now we shall show how the first equivalence in the theorem is satisfied for all $f \in C([-c, c])$. In fact, we will do better and show the following:

Theorem: For every $\varepsilon>0$ and $f \in C([-c, c])$, there is a g in the linear span of the the Fourier system with

$$
\|f-g\|_{\infty}<\varepsilon
$$

We call such a g a trigonometric polynomial. The proof is appropriated from Rudin's Real and Complex Analysis and is, like most results in that text, pure magic.

PROOF: Define

$$
Q_{k}(x)=c_{k}\left(\frac{1+\cos \left(\frac{\pi x}{c}\right)}{2}\right)^{k}
$$

where $k \in \mathbb{N}$ and

$$
c_{k}=\frac{2 c}{\int_{-c}^{c}\left(\frac{1+\cos \left(\frac{\pi x}{c}\right)}{2}\right)^{k} d x}
$$

In your homework, you will show that $\left(\frac{1+\cos \left(\frac{\pi x}{c}\right)}{2}\right)^{k}$ is a trig polynomial. Now by definition, $\frac{1}{2 c} \int_{-c}^{c} Q_{k}(x) d x=1$, as the constant c_{k} is chosen precisely to make this true. Since $-1 \leq \cos \left(\frac{\pi x}{c}\right)$, we have that $Q_{k}(x) \geq 0$ for all $x \in[-c, c]$. Note also $\cos \left(\frac{\pi x}{c}\right)$ is an even function, and so $Q_{k}(x)$ is even for all $k \geq 1$. Hence,

$$
1=\frac{c_{k}}{2 c} \int_{-c}^{c}\left(\frac{1+\cos \left(\frac{\pi x}{c}\right)}{2}\right)^{k} d x=\frac{c_{k}}{c} \int_{0}^{c}\left(\frac{1+\cos \left(\frac{\pi x}{c}\right)}{2}\right)^{k} d x
$$

Using the fact that $1 \geq \sin \left(\frac{\pi x}{c}\right)$,

$$
1=\frac{c_{k}}{c} \int_{0}^{c}\left(\frac{1+\cos \left(\frac{\pi x}{c}\right)}{2}\right)^{k} d x \geq \frac{c_{k}}{c} \int_{0}^{c}\left(\frac{1+\cos \left(\frac{\pi x}{c}\right)}{2}\right)^{k} \sin \left(\frac{\pi x}{c}\right) d x
$$

By using the substitution $u=\frac{1+\cos \left(\frac{\pi x}{c}\right)}{2}$, we may evaluate this last integral as

$$
\frac{2 c_{k}}{\pi} \int_{0}^{1} u^{k} d x=\left.\frac{2 c_{k}}{\pi}\left(\frac{u^{k+1}}{k+1}\right)\right|_{0} ^{1}=\frac{2 c_{k}}{\pi(k+1)}
$$

and so $1 \geq \frac{2 c_{k}}{\pi(k+1)}$, which implies

$$
\begin{equation*}
1 \leq \frac{\pi(k+1)}{2 c_{k}} \tag{1}
\end{equation*}
$$

Note the derivative of Q_{k} is

$$
Q_{k}^{\prime}(x)=-\frac{\pi k}{c} \frac{Q_{k-1}(x)}{c_{k-1}} \sin \left(\frac{\pi x}{c}\right)
$$

and both Q_{k-1} and $\sin \left(\frac{\pi x}{c}\right)$ are positive on $[0, c]$. Therefore, $Q_{k}^{\prime} \leq 0$ on $[0, c]$, and so Q_{k} is decreasing on $[0, c]$.

Since Q_{k} is decreasing on $[0, c]$, then if $\delta \leq x \leq c$,

$$
\begin{aligned}
Q_{k}(x) \leq Q_{k}(\delta) & =c_{k}\left(\frac{1+\cos \left(\frac{\pi \delta}{c}\right)}{2}\right)^{k} \\
& \leq \frac{\pi(k+1)}{2 c_{k}} \cdot c_{k}\left(\frac{1+\cos \left(\frac{\pi \delta}{c}\right)}{2}\right)^{k} \\
& =\frac{\pi(k+1)}{2}\left(\frac{1+\cos \left(\frac{\pi \delta}{c}\right)}{2}\right)^{k}
\end{aligned}
$$

As $\delta>0$, we have that $\cos \left(\frac{\pi \delta}{c}\right)<1$, and so $\frac{1+\cos \left(\frac{\pi \delta}{c}\right)}{2}<1$. Therefore, regardless of the value of δ, if we set $a=\frac{1+\cos \left(\frac{\pi \delta}{c}\right)}{2}$, we have for all $\delta<x \leq c$,

$$
\begin{equation*}
\lim _{k \rightarrow \infty} Q_{k}(x) \leq \lim _{k \rightarrow \infty} Q_{k}(\delta)=\frac{\pi}{2} \lim _{k \rightarrow \infty} \frac{(k+1)}{a^{-k}}=\frac{\pi}{2} \lim _{k \rightarrow \infty} \frac{1}{-\ln (a) a^{-k}}=0 \tag{2}
\end{equation*}
$$

by l'Hopital's rule. The fact that Q_{k} is even for all k implies that this result extends to show that

$$
\lim _{k \rightarrow \infty} Q_{k}(-x) \leq \lim _{k \rightarrow \infty} Q_{k}(\delta)=0
$$

for all $0<\delta \leq x \leq c$.
Unfortunately, the Q_{k} 's are not quite good enough to prove what we want since they have no obvious relationship to our given function $f \in C([-c, c])$. For the moment, extend f to all real numbers by setting $h(x+2 n c)=f(x)$ for all integers n and $x \in[-c, c)$. This new function may have no resemblance to the original f outside the interval $[-c, c)$, but since we only care about the behavior of f inside the interval, this is justified. We further define, for all real numbers x,

$$
g_{k}(x)=\frac{1}{2 c} \int_{-c}^{c} h(x-y) Q_{k}(y) d y
$$

for $k \geq 1$. Then by substituting $u=x-y$,

$$
g_{k}(x)=\frac{1}{2 c} \int_{-c}^{c} h(x-y) Q_{k}(y) d y=-\frac{1}{2 c} \int_{x+c}^{x-c} h(u) Q_{k}(x-u) d u .
$$

Now the integrand is a $2 c$ periodic function over an interval of length $2 c$, and so it follows that
$\int_{x+c}^{x-c} h(u) Q_{k}(x-u) d u=\int_{c}^{-c} h(u) Q_{k}(x-u) d u=-\int_{-c}^{c} h(u) Q_{k}(x-u) d u$.
Hence,
$g_{k}(x)=-\frac{1}{2 c} \int_{x+c}^{x-c} h(u) Q_{k}(x-u) d u=\frac{1}{2 c} \int_{-c}^{c} h(u) Q_{k}(x-u) d u=\frac{1}{2 c} \int_{-c}^{c} f(u) Q_{k}(x-u) d u$
by the definition of h.
Recall that the Q_{k} 's are trig polynomials, so for each k, there are nonnegative integers $n_{0, k}, \ldots, n_{j, k}$ and scalars $\alpha_{0, k}, \ldots, \alpha_{j_{k}, k}$ and $\beta_{1, k}, \ldots, \beta_{j_{k}, k}$ satisfying

$$
Q_{k}(x)=\alpha_{0, k}+\sum_{i=1}^{j_{k}}\left(\alpha_{i, k} \cos \left(\frac{\pi n_{i, k} x}{c}\right)+\beta_{i, k} \sin \left(\frac{\pi n_{i, k} x}{c}\right)\right)
$$

We may assume the same index set for both β 's and α 's by a judicious use of zeros in the coefficients. Then

$$
\begin{aligned}
g_{k}(x) & =\frac{1}{2 c} \int_{-c}^{c} f(u) Q_{k}(x-u) d u \\
& =\frac{1}{2 c} \int_{-c}^{c} f(u) \alpha_{0, k}+f(u) \sum_{i=1}^{j_{k}}\left(\alpha_{i, k} \cos \left(\frac{\pi n_{i, k}(x-u)}{c}\right)+\beta_{i, k} \sin \left(\frac{\pi n_{i, k}(x-u)}{c}\right)\right) d u \\
& =\frac{1}{2 c} \int_{-c}^{c} f(u) \alpha_{0, k} d u \\
& +\frac{1}{2 c} \sum_{i=1}^{j_{k}} \int_{-c}^{c}\left(\alpha_{i, k}\left(\cos \left(\frac{\pi n_{i, k} x}{c}\right) \cos \left(\frac{\pi n_{i, k} u}{c}\right)+\sin \left(\frac{\pi n_{i, k} x}{c}\right) \sin \left(\frac{\pi n_{i, k} u}{c}\right)\right)\right) d u \\
& +\frac{1}{2 c} \sum_{i=1}^{j_{k}} \int_{-c}^{c} \beta_{i, k}\left(\left(\sin \left(\frac{\pi n_{i, k} x}{c}\right) \cos \left(\frac{\pi n_{i, k} u}{c}\right)-\cos \left(\frac{\pi n_{i, k} x}{c}\right) \sin \left(\frac{\pi n_{i, k} u}{c}\right)\right)\right) d u
\end{aligned}
$$

where we have used the identities $\cos (A-B)=\cos (A) \cos (B)+\sin (A) \sin (B)$ and $\sin (A-B)=\sin (A) \cos (B)-\cos (A) \sin (B)$. Rewriting a single integral,

$$
\int_{-c}^{c} \alpha_{i, k}\left(\cos \left(\frac{\pi n_{i, k} x}{c}\right) \cos \left(\frac{\pi n_{i, k} u}{c}\right)+\sin \left(\frac{\pi n_{i, k} x}{c}\right) \sin \left(\frac{\pi n_{i, k} u}{c}\right)\right) d u
$$

$$
=\alpha_{i, k} \cos \left(\frac{\pi n_{i, k} x}{c}\right)\left(\int_{-c}^{c} \cos \left(\frac{\pi n_{i, k} u}{c}\right) d u\right)+\alpha_{i, k} \sin \left(\frac{\pi n_{i, k} x}{c}\right)\left(\int_{-c}^{c} \sin \left(\frac{\pi n_{i, k} u}{c}\right) d u\right) .
$$

Since each integral with respect to u is just another constant, this shows that any individual integral in the first sum can be written as a trig polynomial, and a similar tedious calculation will show the same for the second sum. We conclude that g_{k} is a trig polynomial.

