
Math 454/554 Notes 9/28

Damage Control: Contrary to what was stated towards the end of class
last time, the functions cos

(
πnx
c

)
and sin

(
πnx
c

)
are not always orthogonal on

[0, c]. For example,∫ π

0

sin(2x) cos(2x) dx =
1

2

∫ π

0

sin(4x) dx(
cos(4x)

4

) ∣∣∣π
0

= 0

but ∫ π

0

sin(2x) cos(x) dx =
1

2

∫ π

0

sin(3x) + sin(x) dx

=
1

2

(
− cos(3x)

3
− cos(x)

) ∣∣∣π
0

=
4

3

In fact, the set {φn}∞n=0 is a complete orthonormal set on [0, c]. We will
prove this in a circuitous fashion. First, we expand our scope to the interval
[−c, c] and observe that the system {Φ}∞n=0 ∪ {Γm}∞m=1 defined on [−c, c] by

Φ0(x) =
1√
2c

Φn(x) =
1√
c

cos
(πnx

c

)
, n ≥ 1

Γn(x) =
1√
c

sin
(πmx

x

)
is indeed orthonormal. Calculations similar to what we obtained in the [0, c]
case show that {Φn}∞n=0 and {Γm}∞m=1 are each orthonormal sets, and this
time, your homework WILL show that∫ c

−c
sin
(mπx

c

)
cos
(nπx

c

)
dx = 0.
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for all natural numbers m and all nonnegative integers n. We then arrive at
a definition.

Definition: The Fourier Series of a continuous function f on the interval
[−c, c] is the series

a0 +
∞∑
n=1

(anΦn + bnΓn)

where an = 〈f,Φn〉 and bn = 〈f,Γn〉 and the convergence is in mean.
Written another way, this is

A0

2
+
∞∑
n=1

(
An cos

(πnx
c

)
+Bn sin

(πnx
c

))
where A0 = 2a0 and An = 1√

c
an, Bn = 1√

c
bn for n ∈ N.

We shall then employ the following theorem to show that the Fourier
orthonormal system is complete on [−c, c].

Completeness Theorem: Let {ψn}∞n=0 be an orthonormal sequence in
C([a, b]). The following are equivalent:

• For every ε0 > 0 and all f ∈ C([a, b]), there exists a g in the linear
span of the ψn’s with

‖f − g‖2 < ε0.

•
∞∑
n=0

〈f, ψn〉2 = ‖f‖22 for all f ∈ C([a, b]).

Some comments before the proof.

1. The second equivalence is called Parseval’s Formula.

2. A function g is in the linear span of the ψn’s if there are nonnegative
integers n0, . . . , nk and scalars αi for 0 ≤ i ≤ k with

g(x) =
k∑
i=0

αiψni(x).

Note that the sum is finite and that, as a matter of definition, αi =
〈g, ψni〉.
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3. The difficulty is that it is not a priori the case that we can choose
αi = 〈f, ψni〉!

We shall now prove the easy direction of the theorem. The harder direc-
tion is beyond the scope of this course.

PROOF: Suppose Parseval’s Formula is satisfied for all f ∈ C([a, b]). Then
given such an f and ε0 > 0, there is an N ∈ N such that

‖f‖22 −
N∑
n=0

〈f, ψn〉2 < ε2
0.

Set g =
N∑
n=0

〈f, ψn〉ψn. Recall from the proof of Bessel’s Inequality that

‖f − g‖22 = ‖f‖22 − ‖g‖22 = ‖f‖22 −
N∑
n=0

〈f, ψn〉2 < ε2
0.

By taking square roots of both sides, we then arrive at

‖f − g‖2 < ε0.

This ends the proof of the easy direction.
Now we shall show how the first equivalence in the theorem is satisfied

for all f ∈ C([−c, c]). In fact, we will do better and show the following:

Theorem: For every ε > 0 and f ∈ C([−c, c]), there is a g in the linear span
of the the Fourier system with

‖f − g‖∞ < ε.

We call such a g a trigonometric polynomial. The proof is appropriated
from Rudin’s Real and Complex Analysis and is, like most results in that
text, pure magic.

PROOF: Define

Qk(x) = ck

(
1 + cos(πx

c
)

2

)k
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where k ∈ N and

ck =
2c∫ c

−c

(
1+cos(πx

c
)

2

)k
dx
.

In your homework, you will show that
(

1+cos(πx
c

)

2

)k
is a trig polynomial.

Now by definition, 1
2c

∫ c
−cQk(x) dx = 1, as the constant ck is chosen precisely

to make this true. Since −1 ≤ cos(πx
c

), we have that Qk(x) ≥ 0 for all
x ∈ [−c, c]. Note also cos(πx

c
) is an even function, and so Qk(x) is even for

all k ≥ 1. Hence,

1 =
ck
2c

∫ c

−c

(
1 + cos

(
πx
c

)
2

)k

dx =
ck
c

∫ c

0

(
1 + cos

(
πx
c

)
2

)k

dx

Using the fact that 1 ≥ sin
(
πx
c

)
,

1 =
ck
c

∫ c

0

(
1 + cos

(
πx
c

)
2

)k

dx ≥ ck
c

∫ c

0

(
1 + cos

(
πx
c

)
2

)k

sin
(πx
c

)
dx.

By using the substitution u =
1+cos(πxc )

2
, we may evaluate this last integral

as
2ck
π

∫ 1

0

uk dx =
2ck
π

(
uk+1

k + 1

) ∣∣∣1
0

=
2ck

π(k + 1)
,

and so 1 ≥ 2ck
π(k+1)

, which implies

1 ≤ π(k + 1)

2ck
(1)

Note the derivative of Qk is

Q′k(x) = −πk
c

Qk−1(x)

ck−1

sin
(πx
c

)
and both Qk−1 and sin

(
πx
c

)
are positive on [0, c]. Therefore, Q′k ≤ 0 on [0, c],

and so Qk is decreasing on [0, c].

4



Since Qk is decreasing on [0, c], then if δ ≤ x ≤ c,

Qk(x) ≤ Qk(δ) = ck

(
1 + cos

(
πδ
c

)
2

)k

≤ π(k + 1)

2ck
· ck

(
1 + cos

(
πδ
c

)
2

)k

=
π(k + 1)

2

(
1 + cos

(
πδ
c

)
2

)k

.

As δ > 0, we have that cos
(
πδ
c

)
< 1, and so

1+cos(πδc )
2

< 1. Therefore,

regardless of the value of δ, if we set a =
1+cos(πδc )

2
, we have for all δ < x ≤ c,

lim
k→∞

Qk(x) ≤ lim
k→∞

Qk(δ) =
π

2
lim
k→∞

(k + 1)

a−k
=
π

2
lim
k→∞

1

− ln(a)a−k
= 0 (2)

by l’Hopital’s rule. The fact that Qk is even for all k implies that this result
extends to show that

lim
k→∞

Qk(−x) ≤ lim
k→∞

Qk(δ) = 0

for all 0 < δ ≤ x ≤ c.
Unfortunately, the Qk’s are not quite good enough to prove what we want

since they have no obvious relationship to our given function f ∈ C([−c, c]).
For the moment, extend f to all real numbers by setting h(x + 2nc) = f(x)
for all integers n and x ∈ [−c, c). This new function may have no resemblance
to the original f outside the interval [−c, c), but since we only care about
the behavior of f inside the interval, this is justified. We further define, for
all real numbers x,

gk(x) =
1

2c

∫ c

−c
h(x− y)Qk(y) dy.

for k ≥ 1. Then by substituting u = x− y,

gk(x) =
1

2c

∫ c

−c
h(x− y)Qk(y) dy = − 1

2c

∫ x−c

x+c

h(u)Qk(x− u) du.
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Now the integrand is a 2c periodic function over an interval of length 2c, and
so it follows that∫ x−c

x+c

h(u)Qk(x− u) du =

∫ −c
c

h(u)Qk(x− u) du = −
∫ c

−c
h(u)Qk(x− u) du.

Hence,

gk(x) = − 1

2c

∫ x−c

x+c

h(u)Qk(x−u) du =
1

2c

∫ c

−c
h(u)Qk(x−u) du =

1

2c

∫ c

−c
f(u)Qk(x−u) du

by the definition of h.
Recall that the Qk’s are trig polynomials, so for each k, there are non-

negative integers n0,k, . . . , nj,k and scalars α0,k, . . . , αjk,k and β1,k, . . . , βjk,k
satisfying

Qk(x) = α0,k +

jk∑
i=1

(
αi,k cos

(πni,kx
c

)
+ βi,k sin

(πni,kx
c

))
.

We may assume the same index set for both β’s and α’s by a judicious use
of zeros in the coefficients. Then

gk(x) =
1

2c

∫ c

−c
f(u)Qk(x− u) du

=
1

2c

∫ c

−c
f(u)α0,k + f(u)

jk∑
i=1

(
αi,k cos

(
πni,k(x− u)

c

)
+ βi,k sin

(
πni,k(x− u)

c

))
du

=
1

2c

∫ c

−c
f(u)α0,k du

+
1

2c

jk∑
i=1

∫ c

−c

(
αi,k

(
cos
(πni,kx

c

)
cos
(πni,ku

c

)
+ sin

(πni,kx
c

)
sin
(πni,ku

c

)))
du

+
1

2c

jk∑
i=1

∫ c

−c
βi,k

((
sin
(πni,kx

c

)
cos
(πni,ku

c

)
− cos

(πni,kx
c

)
sin
(πni,ku

c

)))
du

where we have used the identities cos(A−B) = cos(A) cos(B)+sin(A) sin(B)
and sin(A−B) = sin(A) cos(B)− cos(A) sin(B). Rewriting a single integral,

∫ c

−c
αi,k

(
cos
(πni,kx

c

)
cos
(πni,ku

c

)
+ sin

(πni,kx
c

)
sin
(πni,ku

c

))
du
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= αi,k cos
(πni,kx

c

)(∫ c

−c
cos
(πni,ku

c

)
du

)
+αi,k sin

(πni,kx
c

)(∫ c

−c
sin
(πni,ku

c

)
du

)
.

Since each integral with respect to u is just another constant, this shows
that any individual integral in the first sum can be written as a trig poly-
nomial, and a similar tedious calculation will show the same for the second
sum. We conclude that gk is a trig polynomial.
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