
Math 454/554 Notes 9/30

We have shown that, for a continuous function f on the interval [−c, c],
the Fourier series represented by
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verges to f in mean. However, recall that the heat equation

ut = kuxx

was formulated on [0, c] with boundary conditions ux(0, t) = ux(c, t) = 0 and
u(x, 0) = f(x) for some (continuous) function f on [0, c]. What we’d like to
show is mean convergence of the series
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This follows by extending f to an even function on [−c, c] by defining

g(x) =

{
f(x) 0 ≤ x ≤ c

f(−x) −c ≤ x < 0.

Then g(x) is even and continuous on [−c, c] and so the Fourier series of g
converges to g in mean on that interval. However, on [−c, c],∫ c
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in mean, where A′n = 1
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and so by the Parseval Formula,∫ c
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where the inner product in the first sum is over [−c, c] and the one in the
second over [0, c]. This implies that the series of all cosines converges to f in
mean on the interval [0, c].

A couple of definitions:
Definition: If f ∈ C([0, c]), then the Fourier cosine series of f is the series

C0 +
∞∑
n=1
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)
where the Cn’s are as above. The Fourier sine series of f is the series

∞∑
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∫ c
0
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dx. Both series converge in mean to f on

the interval [0, c].
You may object that the method of proof employed to exhibit mean con-

vergence of the Fourier cosine series to f will fail since f(0) is not necessarily
zero. This does not affect the correctness of the result, though.

Recall that we arrived at the Fourier cosine series as a solution to the
differential equation

g′′(x)− λg(x) = 0.
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What is not yet clear is that if g(x) = C0

2
+
∑∞

n=1Cn cos
(
πnx
c

)
in mean, then

the second derivative of g is equal to the term-wise second derivative of the
Fourier cosine series of g.

To illustrate this point, consider the following happy example in a weaker
mode of convergence:

Example: Let
gn(x) = n2x2(1− x2)n

for x ∈ [0, 1]. Then gn(x) = xfn(x), where

fn(x) = n2x(1− x2)n.

In your homework, you showed fn → 0 pointwise, and so gn → 0 pointwise
on [0, 1]. However, you can check that

g′′n(x) = 2n2(1− x2)n − 10x2n3(1− x2)n−1 + 4(n− 1)n3x4(1− x2)n−2

and so g′′n(1) = 2n2, which does not converge to zero as n → ∞. Then it
cannot be the case that g′′n → 0 pointwise.

The previous example leads us to a discussion of linear operators.

Definition: A function T from a vector space V to another vector space W
(both over the same field) is called linear if for all v, w ∈ V and all scalars
α, β,

T (αv + βw) = αTv + βTw.

Such a T is commonly called (by functional analysts) a linear operator
from V to W .

Examples:

1. Any real n ×m matrix from V = Rm to W = Rn is linear. The fact
that the converse is true is a standard result in linear algebra.

2. If V = W = C([a, b]) and g ∈ C([a, b]), then the map Mg from V to
itself given for f ∈ C([a, b]) by

Mg(f) = fg

for f ∈ C([a, b]) is linear.
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3. Let V be the subspace of C([a, b]) consisting of all differentiable func-
tions with continuous first derivative (we assume the existence of left-
hand derivatives at x = −c and right-hand derivatives at x = c- more
on this later). Then the map D given by

D(f)(x) = f ′(x)

for f ∈ V is linear. Here, W = C([a, b]).

Now suppose V and W are normed linear spaces with norms ‖ · ‖ and
‖ · ‖′, respectively.

Definition: A linear map T from V to W is called continuous if for every
ε > 0, there is a δ > 0 with

‖T (x− y)‖′ < ε when ‖x− y‖ < δ.

Examples:

1. If V = Rm and W = Rn are both given the Euclidean norm, then any
real n×m matrix from V to W is continuous. In fact, no matter what
norm you pick on finite dimensional spaces, any linear map between
them will be continuous! This is badly false in the infinite dimensional
case.

2. If (V, ‖ · ‖) = (W, ‖ · ‖′) = (C([a, b], ‖ · ‖∞) and Mg is as above, then Mg

is continuous. It is also continuous on (C([a, b], ‖ · ‖2).

3. With either ‖ · ‖2 or ‖ · ‖∞, the map D is discontinuous from the space
of all differentiable functions with continuous first derivative on [a, b]
to C([a, b]).

In order to really see this last point, we’ll need a reformulation of conti-
nuity for linear maps.

Theorem: A linear map T from (V, ‖ · ‖) to (W, ‖ · ‖′) is continuous if and
only if there is a real number K > 0 with

‖Tx‖′ ≤ K‖x‖
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for all x in V .

It is not hard to prove either equivalence, so let’s do the direction we
need.
PROOF: (⇒) Suppose T is continuous. Note that the linearity of T implies
that T (0) = 0. By the continuity of T at 0, there is a δ > 0 so that

‖Tv‖′ < 1 when ‖v‖ < δ.

If γ > 0, then for any x ∈ V , ‖x‖
‖x‖+γ < 1, so∥∥∥ δx

‖x‖+ γ

∥∥∥ = δ · ‖x‖
‖x‖+ γ

< δ

Then by the linearity of T ,

δ

‖x‖+ γ
· ‖Tx‖′ =

∥∥∥T ( δx

‖x‖+ γ

)∥∥∥′ < 1,

which implies that

‖Tx‖′ < ‖x‖+ γ

δ
.

Since γ > 0 is arbitrary, we conclude that

‖Tx‖′ ≤ ‖x‖
δ
,

and so the result follows by setting K = 1
δ
.

Now let’s return to the third example. Let n be a natural number and
let fn(x) = xn on [0, 1]. Then ‖fn‖∞ = 1 for all n, but

‖D(fn)‖∞ = ‖nxn−1‖∞ = n = n‖xn‖∞

which goes to infinity as n → ∞. Therefore, D cannot be continuous as a
map from a subspace of (C([a, b], ‖ · ‖∞) to (C([a, b], ‖ · ‖∞). Further,

‖fn‖22 =

∫ 1

0

x2n dx =
x2n+1

2n+ 1

∣∣∣1
0

=
1

2n+ 1

but

‖D(fn)‖22 =

∫ 1

0

n2x2n−2 dx = n2 x
2n−1

2n− 1

∣∣∣1
0

=
n2

2n− 1
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and so

‖D(fn)‖22 =
2n− 1

2n+ 1
n2 · ‖fn‖22

which again goes to infinity as n→∞. This shows that D is not continuous
as a map from a subspace of (C([a, b], ‖ · ‖2) to (C([a, b], ‖ · ‖2).

However, we should like the operator D, and for the purposes of analyzing
the heat equation, we should like D2 even better. This is so because the
equation

g′′(x)− λg(x) = 0.

can be rewritten as
D2(g)− λg = 0.

Since we are momentarily only considering convergence of Fourier series in
mean, it is desirable to know that if gn → g in mean, then D2(gn)→ D2(g)
in mean as well. With a few assumptions, this does in fact hold, though we
shall only state and not prove it.

Theorem: If gn → g in mean on [0, c] and {gn}∞n=1 are all twice-differentiable
on [0, c] with continuous second derivative, then if D2(gn) → h in mean, we
have that h = g.

If f is twice-differentiable with continuous second derivative on [−c, c],
then in fact

fN(x) =
N∑
n=1

(
An

(
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c

))′′
+Bn

(
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N∑
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n2π2

c2
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c

)
−Bn

n2π2

c2
sin
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c

))
is convergent in mean, and so the theorem applies to show that this sum is
in fact equal to f in mean. This provides additional evidence that mean con-
vergence is the correct mode of convergence for Fourier series of continuous
functions. Further investigation of this thread leads to the theory of Sobolev
spaces, which are indispensable tools in the study of partial differential equa-
tions.

6


