The Minimum of the Dirichlet Kernel

Let

$$
\begin{equation*}
D_{N}(x)=\sum_{n=-N}^{N} e(n x)=\frac{\sin (2 N+1) \pi x}{\sin \pi x} \tag{1}
\end{equation*}
$$

denote the Dirichlet kernel, where $e(\theta)=e^{2 \pi i \theta}$. Clearly the maximum of the Dirichlet kernel is $D_{N}(0)=2 N+1$. The Dirichlet kernel has zeros at $n /(2 N+1)$ for $n=1,2, \ldots, 2 N$. Between consecutive zeros, $D_{N}(x)$ must have at least one local extremum, making a total of at least $2 N$ local extrema. But $D_{n}^{\prime}(x)$ is a trigonometric polynomial of degree N, so it can have at most $2 N$ roots. Thus we conclude that there is exactly one local extremum between each pair of consecutive zeros. The unique maximum of $D_{N}(x)$ in $[-1 /(2 N+1), 1 /(2 N+1)]$ is at $x=0$. Put $x_{0}=0$, and for $n=1, \ldots, 2 N-1$, let x_{n} denote the unique root of $D_{N}^{\prime}(x)=0$ in the interval $[n /(2 N+1),(n+1) /(2 N+1)]$. Since $1 / \sin \pi x$ is decreasing for $0<x \leq 1 / 2$, it follows that

$$
\left|D_{N}\left(x_{n-1}\right)\right|>\left|D_{N}\left(x_{n}-1 / 2 N+1\right)\right|>\left|D_{N}\left(x_{n}\right)\right|
$$

for $1 \leq n \leq N$. The Dirichlet kernel lies between the two envelopes $\pm 1 / \sin \pi x$, and is tangent to one or the other of these curves at the points $(2 n-1) /(2(2 N+1)), n=$ $1,2, \ldots, 2 N+1$. In particular, at the second of these points we have

$$
D_{N}\left(\frac{3 / 2}{2 N+1}\right)=\frac{-1}{\sin \frac{3 \pi}{4 N+2}} \sim-c_{1}(2 N+1)
$$

where

$$
c_{1}=\frac{2}{3 \pi}=.2122065907
$$

One might speculate that $3 /(4 N+2)$ is close enough to x_{1} to ensure that $D_{N}\left(x_{1}\right) \sim$ $-c_{1}(2 N+1)$, but we show below that the minimum is smaller:

$$
\begin{equation*}
D_{N}\left(x_{1}\right) \sim-c_{0}(2 N+1) \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
c_{0}=.2172336282 \tag{3}
\end{equation*}
$$

Clearly

$$
\begin{equation*}
D_{N}^{\prime}(x)=\pi \frac{(2 N+1) \sin \pi x \cos \pi(2 N+1) x-\cos \pi x \sin \pi(2 N+1) x}{(\sin \pi x)^{2}} \tag{4}
\end{equation*}
$$

For $0 \leq x \leq 1$ we have

$$
\sin \pi x=\pi x+O\left(x^{3}\right), \quad \cos \pi x=1+O\left(x^{2}\right)
$$

Hence the numerator in (4) is

$$
\begin{equation*}
\pi(2 N+1) x \cos \pi(2 N+1) x-\sin \pi(2 N+1) x+O\left(N x^{3}\right)+O\left(x^{2}\right) \tag{5}
\end{equation*}
$$

Put $u=\pi(2 N+1) x$. The main term above is $f(u)=u \cos u-\sin u$. We note that $f(\pi)=-\pi$, that $f(3 \pi / 2)=\pi$, and that $f^{\prime}(u)=-u \sin u \geq 0$ for $\pi \leq u \leq 3 \pi / 2$. Hence f has precisely one zero in the interval $(\pi, 3 \pi / 2)$, say $f\left(u^{\prime}\right)=0$. We apply Newton's method, which is to say we start with $u_{1}=4.6$, and set

$$
u_{n+1}=u_{n}-\frac{f\left(u_{n}\right)}{f^{\prime}\left(u_{n}\right)}=u_{n}+\cot u-\frac{1}{u} .
$$

This generates the following numbers:

n	u_{n}	$u_{n}-u^{\prime}$
1	4.6	10^{-1}
2	4.495473284870517486798728632548	2×10^{-3}
3	4.493410402318926518824251478832	10^{-6}
4	4.493409457909262667896829189473	2×10^{-13}
5	4.493409457909064175307880936048	10^{-26}

Put

$$
x^{\prime}=\frac{u^{\prime}}{\pi(2 N+1)} .
$$

If we take $x=x^{\prime}$ in (5), then the main terms sum to 0 , and the error terms are $O\left(N^{-2}\right)$. The denominator in (4) is also $\asymp N^{-2}$, so $D_{N}^{\prime}\left(x^{\prime}\right)=O(1)$. Since $D_{N}^{\prime \prime}(x) \asymp N^{3}$ for x near x^{\prime}, it follows that $x_{1}=x^{\prime}+O\left(N^{-3}\right)$, and hence that $D_{N}\left(x_{1}\right)=D_{N}\left(x^{\prime}\right)+O\left(N^{-3}\right)$. From the equation $u^{\prime}=\tan u^{\prime}$ we deduce that $\sin u^{\prime}=-u^{\prime} / \sqrt{1+u^{\prime 2}}$. Since

$$
\sin \pi(2 N+1) x_{1}=\sin \pi(2 N+1) x^{\prime}+O\left(N^{-2}\right)=\sin u^{\prime}+O\left(N^{-2}\right)=\frac{-u^{\prime}}{\sqrt{1+u^{\prime 2}}}+O\left(N^{-2}\right)
$$

and since

$$
\sin \pi x_{1} \sim \sin \pi x^{\prime}=\sin \frac{u^{\prime}}{2 N+1} \sim \frac{u^{\prime}}{2 N+1}
$$

it follows that we have (2) with

$$
c_{0}=\frac{1}{\sqrt{1+u^{\prime 2}}}=0.21723362821122165741
$$

