
Lecture 3: Convergence of Fourier Series∗

Himanshu Tyagi

Let f be an absolutely integrable function on T := [−π, π], i.e., f ∈
L1(T). For n = 1, 2, . . . define

f̂(n) =
1

2π

∫

T

f(θ)e−in θ dθ.

The series

∞
∑

n=−∞

f̂(n)ein θ is called the Fourier Series (FS) of f .

The FS of f does not converge to f point-wise a.e.. If we restrict to contin-
uous functions, the point-wise convergence of FS can not be guaranteed. In
this lecture, we define weaker but important criteria for convergence under
which the FS of continuous f does converge to f .
A. The definition of convolution given in Lecture 1 can be easily modified
for functions in L1(T). For f, g ∈ L1(T) the convolution f ∗ g is defined as

f ∗ g(x) =

∫ π

−π

f(x − y)g(y) dy,

where f(x) = f(x mod T). Also, Theorem 1 of Lecture 1 and property (v)
of convolution hold. Therefore, we can mimic the proof therein to show there
is no identity for convolution in L1(T), provided we prove the Riemann-
Lebesgue Lemma. Here we give an alternate proof of Riemann-Lebesgue
Lemma using approximate identity.

Definition 1. A sequence {Kn} of continuous functions on R is a summa-

bility kernel if for all n ∈ N

(i)
∫

R
Kn(x) dx = 1,

(ii)
∫

R
|Kn(x)| dx ≤ M ,

(iii) For each 0 < δ < π, lim
n→∞

∫

|x|>δ

|Kn(x)| dx = 0.

∗This lecture is taken from the lecture notes of the course Fourier Series organized by
Prof. Rajendra Bhatia at the Indian Statistical Institute, New Delhi, India. It was also
published as: R. Bhatia, Fourier series(Second Edition), Hindustan Book Agency (India),
2003.
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Note here that limits of integral in property three represents the union of
regions [−π,−δ) and (δ, π]. As was shown in the last lecture, a summability
kernel is a bounded approximate identity for L1(T). Also, the Fejer kernel

Kn(t) =
n
∑

j=−n

1

2π

(

1 −
|j|

n + 1

)

eijt =
1

2(n + 1)π

(

sin n+1
2 t

sin 1
2t

)2

is a summa-

bility kernel. Therefore we have the following lemma.

Lemma 1. For f ∈ L1(T) and n = 1, 2, . . ., σn(f) := Kn ∗ f . Then

σn(f) → f in L1(T).

Note that σn(f) is a function of form
N
∑

n=−N

aneint. Such a function is

called a trigonometric polynomial of degree N . The Uniqueness Theorem
for FS follows from this Lemma.
The Lemma above says that for all functions f in L1(T) and all positive ǫ,
we can find a trigonometric polynomial P such that ‖f − P‖L1 < ǫ.
It can be simply verified that for trigonometric polynomial P of degree N ,
P̂ (n) = 0 for all n greater than N . The Riemann-Lebesgue Lemma now
follows.

Theorem 2.
1 Let f ∈ L1(T), then

lim
|n|→∞

f̂(n) = 0.

Proof: Let ǫ > 0 and let P be a trigonometric polynomial on T such that
‖f − P‖L1 < ǫ. If |n| > degree of P , then

|f̂(n)| = | ˆ(f − P )(n)| ≤ ‖f − P‖L1 < ǫ.

B. Now we restrict to continuous functions f on T. Since T is compact, f is
bounded. Therefore we get following strengthening of Theorem 5 of Lecture
1.

Theorem 3. For a summability kernel {Kn}n∈N and a continuous function

f on T, Kn ∗ f converges to f point-wise.

1This proof is taken from Y. Katznelson, Introduction to harmonic analysis, third
edition, Cambridge University Press, 2004.
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Proof: Let ǫ > 0. Choose δ > 0 such that if |t| ≤ δ, then ‖f − f (t)‖L∞ <
(ǫ/2M). This can be done since f is continuous and T is compact imply f
is uniformly continuous. Then for t in T we have

|Kn ∗ f(t) − f(t)| ≤

∫

R

|Kn(y)| × |f(t − y) − f(t)| dy [Using

∫

R

Kn(x) dx = 1]

=

∫

|y|≤δ

|Kn(y)| × |f(t − y) − f(t)| dy +

∫

|y|>δ

|Kn(y)| × |f(t − y) − f(t)| dy

≤
ǫ

2
+ 2‖f‖L∞

∫

|y|>δ

|Kn(y)| dy

≤ ǫ,

for sufficiently large n.

C. The Theorem will be instrumental in the proof of convergence of FS. We
begin by defining the convergence criteria we shall be interested in.

Definition 2. A series
∑

n

xn with complex terms xn for n = 1, 2, . . ., is

said to be Abel summable to L if the following holds:

(i) For every 0 < r < 1, the series

∞
∑

n=1

rnxn converges to a limit L(r).

(ii) L(r) converges to L as r → 1.

Definition 3. For a series
∑

n

xn with complex terms xn for n = 1, 2, . . .,

define sN =
N
∑

n=1

xn and σn = s1+...+sn

n
. Then the series

∑

n

xn is said to be

Cesáro summable to L [also called (C, 1)-summable to L] if the sequence σn

converges to L as n → ∞.

We state the next result without proof.

Theorem 4. A series
∑

n

xn with complex terms xn for n = 1, 2, . . . con-

verges to L implies it is Cesáro summable to L.

Furthermore,
∑

n

xn is Cesáro summable to L implies it is Abel summable

to L.

Consider the FS of a continuous function f on T. Define the partial sums

sN (f ; θ) =

N
∑

n=−N

f̂(n)ein θ,
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N = 0, 1, 2, . . .. Also, for en(t) = eint, f ∗ en(θ) = 2πf̂(n)ein θ. Therefore,
sN (f ; θ) = f ∗ DN (θ) where

DN (θ) =
1

2π

N
∑

n=−N

eint.

DN (t) is called the Dirichlet kernel. If the Dirichlet kernel was a summability
kernel we could have shown the point-wise convergence of FS of f to f .
However this is not true. To show that FS of f is Cesáro summable to f ,

we need to show that 1
N+1

N
∑

n=0

sn(f ; θ) converges to f(θ). Note that

1

N + 1

N
∑

n=0

sn(f ; θ) = f ∗
1

N + 1

N
∑

n=0

Dn(θ).

Next we show that 1
N+1

N
∑

n=0

Dn is the Fejer kernel! First note that

1

N + 1

N
∑

n=0

Dn(t) =
1

2(N + 1)π

N
∑

n=0

n
∑

k=−n

eikt

=
1

2(N + 1)π

N
∑

n=0

[1 + 2
n
∑

k=1

cos kt].

Multiplying and dividing [1 + 2

n
∑

k=1

cos kt] with sin t/2 we get

1 + 2

n
∑

k=1

cos kt =
1

sin t/2
[sin t/2 + 2

n
∑

k=1

cos kt sin t/2]

=
sin(n + 1/2)t

sin t/2
.

Therefore,

1

N + 1

N
∑

n=0

Dn(t) =
1

2(N + 1)π

N
∑

n=0

sin(n + 1/2)t

sin t/2
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Again, multiplying and dividing by sin t/2 we get

1

N + 1

N
∑

n=0

Dn(t) =
1

2(N + 1)π

N
∑

n=0

sin(n + 1/2)t sin t/2

(sin t/2)2

=
1

2(N + 1)π

N
∑

n=0

sin(n + 1/2)t sin t/2

(sin t/2)2

=
1

2(N + 1)π

(

sin (N+1)t
2

sin t
2

)2

.

Since Fejer kernel is a summability kernel, we have the following result.

Theorem 5. The FS of f is Cesáro summable to f .

Note that this, using Theorem 4 also implies that FS of f is Abel
summable to f . This result can also be obtained directly. The proof en-
tails analysis of what is known as the Poisson kernel. [You might have
encountered this already in partial differential equations]
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