Lecture 3: Convergence of Fourier Series*

Himanshu Tyagi

Let f be an absolutely integrable function on $\mathbb{T} := [-\pi, \pi]$, i.e., $f \in L^1(\mathbb{T})$. For $n = 1, 2, \ldots$ define

$$\hat{f}(n) = \frac{1}{2\pi} \int_{\mathbb{T}} f(\theta) e^{-in\,\theta} \, d\theta.$$

The series $\sum_{n=-\infty}^{\infty} \hat{f}(n)e^{in\theta}$ is called the *Fourier Series* (FS) of f.

The FS of f does not converge to f point-wise a.e.. If we restrict to continuous functions, the point-wise convergence of FS can not be guaranteed. In this lecture, we define weaker but important criteria for convergence under which the FS of continuous f does converge to f.

A. The definition of convolution given in Lecture 1 can be easily modified for functions in $L^1(\mathbb{T})$. For $f, g \in L^1(\mathbb{T})$ the convolution f * g is defined as

$$f * g(x) = \int_{-\pi}^{\pi} f(x - y)g(y) \, dy,$$

where $f(x) = f(x \mod \mathbb{T})$. Also, Theorem 1 of Lecture 1 and property (v) of convolution hold. Therefore, we can mimic the proof therein to show there is no identity for convolution in $L^1(\mathbb{T})$, provided we prove the Riemann-Lebesgue Lemma. Here we give an alternate proof of Riemann-Lebesgue Lemma using approximate identity.

Definition 1. A sequence $\{K_n\}$ of continuous functions on \mathbb{R} is a summability kernel if for all $n \in \mathbb{N}$

(i) $\int_{\mathbb{R}}^{\circ} K_n(x) dx = 1$, (ii) $\int_{\mathbb{R}} |K_n(x)| dx \leq M$, (iii) For each $0 < \delta < \pi$, $\lim_{n \to \infty} \int_{|x| > \delta} |K_n(x)| dx = 0$.

^{*}This lecture is taken from the lecture notes of the course *Fourier Series* organized by Prof. Rajendra Bhatia at the Indian Statistical Institute, New Delhi, India. It was also published as: R. Bhatia, *Fourier series* (Second Edition), Hindustan Book Agency (India), 2003.

Note here that limits of integral in property three represents the union of regions $[-\pi, -\delta)$ and $(\delta, \pi]$. As was shown in the last lecture, a summability kernel is a bounded approximate identity for $L^1(\mathbb{T})$. Also, the Fejer kernel

$$K_n(t) = \sum_{j=-n}^n \frac{1}{2\pi} \left(1 - \frac{|j|}{n+1} \right) e^{ijt} = \frac{1}{2(n+1)\pi} \left(\frac{\sin \frac{n+1}{2}t}{\sin \frac{1}{2}t} \right)^{-1}$$
 is a summability kernel. Therefore we have the following lemma

bility kernel. Therefore we have the following lemma.

Lemma 1. For $f \in L^1(\mathbb{T})$ and $n = 1, 2, \ldots, \sigma_n(f) := K_n * f$. Then $\sigma_n(f) \to f$ in $L^1(\mathbb{T})$.

Note that $\sigma_n(f)$ is a function of form $\sum_{n=-N}^{N} a_n e^{int}$. Such a function is called a *trigonometric polynomial* of *degree* N. The Uniqueness Theorem for FS follows from this Lemma.

The Lemma above says that for all functions f in $L^1(\mathbb{T})$ and all positive ϵ , we can find a trigonometric polynomial P such that $||f - P||_{L^1} < \epsilon$.

It can be simply verified that for trigonometric polynomial P of degree N, $\hat{P}(n) = 0$ for all n greater than N. The Riemann-Lebesgue Lemma now follows.

Theorem 2. ¹ Let $f \in L^1(\mathbb{T})$, then

$$\lim_{|n| \to \infty} \hat{f}(n) = 0.$$

Proof: Let $\epsilon > 0$ and let P be a trigonometric polynomial on T such that $||f - P||_{L^1} < \epsilon$. If |n| > degree of P, then

$$|\hat{f}(n)| = |(f - P)(n)| \le ||f - P||_{L^1} < \epsilon.$$

B. Now we restrict to continuous functions f on \mathbb{T} . Since \mathbb{T} is compact, f is bounded. Therefore we get following strengthening of Theorem 5 of Lecture 1.

Theorem 3. For a summability kernel $\{K_n\}_{n \in \mathbb{N}}$ and a continuous function f on \mathbb{T} , $K_n * f$ converges to f point-wise.

¹This proof is taken from Y. Katznelson, *Introduction to harmonic analysis*, third edition, Cambridge University Press, 2004.

Proof: Let $\epsilon > 0$. Choose $\delta > 0$ such that if $|t| \leq \delta$, then $||f - f^{(t)}||_{L^{\infty}} < \delta$ $(\epsilon/2M)$. This can be done since f is continuous and T is compact imply f is uniformly continuous. Then for t in \mathbb{T} we have

$$\begin{aligned} |K_n * f(t) - f(t)| &\leq \int_{\mathbb{R}} |K_n(y)| \times |f(t-y) - f(t)| \, dy \qquad [\text{Using } \int_{\mathbb{R}} K_n(x) \, dx = 1] \\ &= \int_{|y| \leq \delta} |K_n(y)| \times |f(t-y) - f(t)| \, dy + \int_{|y| > \delta} |K_n(y)| \times |f(t-y) - f(t)| \, dy \\ &\leq \frac{\epsilon}{2} + 2 \|f\|_{L^{\infty}} \int_{|y| > \delta} |K_n(y)| \, dy \\ &\leq \epsilon, \end{aligned}$$

for sufficiently large n.

C. The Theorem will be instrumental in the proof of convergence of FS. We begin by defining the convergence criteria we shall be interested in.

Definition 2. A series $\sum_{n} x_n$ with complex terms x_n for n = 1, 2, ..., is said to be *Abel summable* to *L* if the following holds: (i) For every 0 < r < 1, the series $\sum_{n=1}^{\infty} r^n x_n$ converges to a limit L(r). (ii) L(r) converges to *L* as $r \rightarrow 1$

(ii) L(r) converges to L as $r \to 1$.

Definition 3. For a series $\sum_{n} x_n$ with complex terms x_n for n = 1, 2, ...,

define $s_N = \sum_{n=1}^N x_n$ and $\sigma_n = \frac{s_1 + \dots + s_n}{n}$. Then the series $\sum_n x_n$ is said to be Cesáro summable to L [also called (C, 1)-summable to L] if the sequence σ_n converges to L as $n \to \infty$.

We state the next result without proof.

Theorem 4. A series $\sum_{n} x_n$ with complex terms x_n for n = 1, 2, ... converges to L implies it is $\overset{n}{C}$ esáro summable to L.

Furthermore, $\sum_{n} x_n$ is Cesáro summable to L implies it is Abel summable to L.

Consider the FS of a continuous function f on \mathbb{T} . Define the partial sums

$$s_N(f;\theta) = \sum_{n=-N}^{N} \hat{f}(n) e^{in\,\theta}$$

 $N = 0, 1, 2, \dots$ Also, for $e_n(t) = e^{int}$, $f * e_n(\theta) = 2\pi \hat{f}(n)e^{in\theta}$. Therefore, $s_N(f;\theta) = f * D_N(\theta)$ where

$$D_N(\theta) = \frac{1}{2\pi} \sum_{n=-N}^{N} e^{int}.$$

 $D_N(t)$ is called the *Dirichlet kernel*. If the Dirichlet kernel was a summability kernel we could have shown the point-wise convergence of FS of f to f. However this is not true. To show that FS of f is Cesáro summable to f, we need to show that $\frac{1}{N+1}\sum_{n=0}^{N} s_n(f;\theta)$ converges to $f(\theta)$. Note that

$$\frac{1}{N+1}\sum_{n=0}^{N} s_n(f;\theta) = f * \frac{1}{N+1}\sum_{n=0}^{N} D_n(\theta)$$

Next we show that $\frac{1}{N+1} \sum_{n=0}^{N} D_n$ is the Fejer kernel! First note that

$$\frac{1}{N+1} \sum_{n=0}^{N} D_n(t) = \frac{1}{2(N+1)\pi} \sum_{n=0}^{N} \sum_{k=-n}^{n} e^{ikt}$$
$$= \frac{1}{2(N+1)\pi} \sum_{n=0}^{N} [1+2\sum_{k=1}^{n} \cos kt].$$

Multiplying and dividing $[1 + 2\sum_{k=1}^{n} \cos kt]$ with $\sin t/2$ we get

$$1 + 2\sum_{k=1}^{n} \cos kt = \frac{1}{\sin t/2} [\sin t/2 + 2\sum_{k=1}^{n} \cos kt \sin t/2]$$
$$= \frac{\sin(n+1/2)t}{\sin t/2}.$$

Therefore,

$$\frac{1}{N+1} \sum_{n=0}^{N} D_n(t) = \frac{1}{2(N+1)\pi} \sum_{n=0}^{N} \frac{\sin(n+1/2)t}{\sin t/2}$$

Again, multiplying and dividing by $\sin t/2$ we get

$$\frac{1}{N+1} \sum_{n=0}^{N} D_n(t) = \frac{1}{2(N+1)\pi} \sum_{n=0}^{N} \frac{\sin(n+1/2)t\sin t/2}{(\sin t/2)^2}$$
$$= \frac{1}{2(N+1)\pi} \sum_{n=0}^{N} \frac{\sin(n+1/2)t\sin t/2}{(\sin t/2)^2}$$
$$= \frac{1}{2(N+1)\pi} \left(\frac{\sin\frac{(N+1)t}{2}}{\sin\frac{t}{2}}\right)^2.$$

Since Fejer kernel is a summability kernel, we have the following result.

Theorem 5. The FS of f is Cesáro summable to f.

Note that this, using Theorem 4 also implies that FS of f is Abel summable to f. This result can also be obtained directly. The proof entails analysis of what is known as the *Poisson kernel*. [You might have encountered this already in partial differential equations]