
CONVERGENCE OF FOURIER SERIES

1. Periodic Fourier series. The Fourier expansion of a 2π-periodic
function f is:

f(x) ∼ a0

2
+

∑

n≥1

an cos(nx) + bn sin(nx),

with coefficients given by:

an =
1
π

∫ π

−π
f(x) cos(nx)dx (n ≥ 0), bn =

1
π

∫ π

−π
f(x) sin(nx)dx (n ≥ 1).

The symbol ∼ above reminds us that this is a merely formal expansion- the
formal series of functions on the right will diverge in many cases, and one
needs to understand in what sense it approximates f .

The ‘Fourier sine and cosine series’, that is, the representations of f
as infinite series of eigenfunctions in [0, π] with Dirichlet (resp, Neumann)
boundary conditions is a special case of this. It is very easy to see that
an vanishes if f is an odd function, while bn vanishes if f is even. Thus
the analysis of Fourier cosine (resp. sine) series of a function f in [0, π] is
equivalent to the analysis of the extension of f , first to [−π, π] as an even
(resp. odd) function, then to all of R with period 2π.

This remark also helps us choose a natural space of periodic functions
to work with, namely, piecewise continuous functions. Much as one might
prefer to work with continuous ones, the extension (as above) to R of a
continuous function in [0, π] is, in general, only piecewise continuous (recall
this means f is continuous at all but a finite number of points in [0, π], and
at discontinuities the one-sided limits exist and are finite; in particular, f is
bounded.) We adopt the notation Cpw for 2π-periodic, piecewise continuous
functions with piecewise-continuous first-derivatives. More generally, we say
f ∈ Ck

per if it is 2π-periodic, with continuous derivatives up to order k and
f (k+1) is piecewise continuous; f ∈ Cper means f is 2π-periodic, continuous,
and f ′ is piecewise continuous.

2. Types of convergence. We are interested in the convergence of the
sequence of partial sums:

sN (x) =
a0

2
+

N∑

n=1

an cosnx + bn sinnx.

Three types of convergence will be considered:
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1. fn → f pointwise on a set I if fn(x) → f(x) for all x ∈ I;

2. fn → f uniformly on a set I if:

sup
x∈I

|fn(x)− f(x)| → 0.

(‘sup’ can be thought of as ‘maximum value’)

3. fn → f in L2 norm if
∫ π

−π
(fn − f)2 → 0.

Pointwise convergence is fairly weak: for example, the pointwise limit of
continuous functions is in general not continuous (example: fn(x) = xn in
[0, 1]). Uniform convergence is the most natural concept (f is continuous if
the fn are and convergence is uniform), but for this very reason is too much
to hope for in many cases. L2 convergence corresponds to ‘approximation
in an average sense’, but it is not easy to see what it means. For one thing,
if fn → f in L2, you can change the fn and f on a set of measure 0 (for
example, on any finite set), and the statement will still be true: integrals
are insensitive to what happens in sets of measure 0, so in particular if a
sequence of functions has a limit in the L2 sense, the limit is never unique!
Horrible! You would have to declare two functions to be ‘equal’ if they differ
on a set of measure 0, but that opens a whole new can of worms. A closely
related concept, but easier to grasp, is ‘convergence in L1 norm’:

∫ π

−π
|fn − f | → 0.

Geometrically, this means the area of the region bounded by the graphs
of fn and f (say, in [−π, π]) tends to zero. (And I mean the geometric
area, not the ‘signed area’ of Calculus; that’s the effect of the absolute value
in the definition.) Unfortunately, this interpretation does not hold for L2

convergence.
There are important logical relationships between these notions of con-

vergence. For instance, uniform convergence easily implies pointwise con-
vergence, L2 convergence and L1 convergence (this is really easy! Check it! ).
Also, consider the chain of inequalities:
∫ b

a
|fn − f | ≤ |a− b|1/2(

∫ b

a
(fn − f)2)1/2 ≤ |a− b|1/2(2M

∫ b

a
|fn − f |)1/2.
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The first one holds for any functions fn, f in (say) Cpw[a, b]- it is the ‘Cauchy-
Schwarz inequality’ for integrals. It shows immediately that convergence in
L2 norm implies convergence in L1 norm (on any bounded interval). The
second one holds under the assumption that f and fn are bounded by M
(just use (fn(x) − f(x))2 ≤ 2M |fn(x) − f(x)| if |fn| ≤ M, |f | ≤ M). So it
shows that if the sequence fn is uniformly bounded (i.e., all |fn| bounded by
a constant M independent of n) and converges to f in the L1 sense, then it
also converges in the L2 sense. (Note that, in this case |f | ≤ M also holds.)

To get a better grasp of the distinction between these different notions
of convergence, there is no substitute for the following exercise.

Exercise 1. Consider the sequence of functions in [0, 1]:

fn(x) =
Mn

h2
n

x2 on [0, hn], fn(x) =
Mn

h2
n

(2hn − x)2 on [hn, 2hn],

and fn(x) = 0 elsewhere in [0, 1]. We assume hn → 0. Mn is an arbitrary
sequence of positive numbers.

(i) Sketch the graphs of the fn. (ii) Show that fn → 0 pointwise, regard-
less of how the Mn are chosen; (iii) Show that fn → 0 uniformly if Mn → 0,
but not otherwise; (iv) Compute

∫ 1
0 fn and

∫ 1
0 f2

n (use the symmetry!); (v)
Show that if the sequence (Mn) is bounded, then fn → 0 in L2 norm (hence
in L1 norm). (vi) Show that, by suitably choosing Mn, one can have exam-
ples with: (a) fn → 0 in L1 norm, but not in L2 norm; (b) fn not converging
to zero in L1 norm.

Part (vi)(a) shows that L2 convergence to zero means a bit more than
‘areas under the graph converge to zero’. It is interesting that I had to
use a quadratic function to get this example- it doesn’t work with linear
‘tents’ ! Also, the examples of part (vi) cannot work if Mn is bounded, as
the following interesting proposition shows:

Proposition. If fn → f pointwise in [0, 1], and is uniformly bounded
(|fn(x)| ≤ M for all x, all n), then fn → f in L1 norm. (And hence also in
L2 norm- as noted above, under these hypotheses, L1 convergence and L2

convergence are equivalent).

Proof. (Reader beware: The proof is recorded here for future reference,
but following the details requires quite a bit more experience than I expect
from the typical reader.) Try to understand the general idea, and feel free
to ask me for more details if you are interested.)

It is enough to consider the case f ≡ 0. Pick ε > 0. For each n, partition
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[0, 1] into a ‘good set’ and a ‘bad set’, [0, 1] = Gn tBn:

Bn = {x; |fn| > ε}, |fn| ≤ ε in Gn.

Denote by |Bn| the measure (‘generalized length’) of the set Bn. If there
is a subsequence ni such that |Bni | is bounded below (say, greater than
some δ > 0), then these bad sets cannot all be disjoint, and one may take
a further subsequence ni and find x ∈ [0, 1] so that x ∈ Bni for all i, that
is, |fni(x)| > ε for all i, which is not possible if fn(x) → 0. Thus |Bn| → 0,
and since |fn| ≤ M everywhere, we have:

∫ 1

0
|fn| =

∫

Bn

|fn|+
∫

Gn

|fn| ≤ M |Bn|+
∫

Gn

|fn| ≤ M |Bn|+ ε ≤ 2ε,

for n sufficiently large. Hence lim sup
∫ 1
0 |fn| ≤ 2ε, and since ε is arbitrary,

it follows that
∫ 1
0 |fn| → 0.

3. Fourier convergence theorems.

Theorem 1. (Dirichlet 1824) Let f ∈ Cpw. Then sN → f̃ pointwise on
R, where

f̃(x) := (f(x+) + f(x−))/2

(average of the one-sided limits at x.)

Theorem 2. Let f ∈ Cper. Then sN → f uniformly in R.

Theorem 3. Let f ∈ Cpw. Then sN → f in L2 norm.

In practice Theorem 2 is the most powerful, but the proofs of all three
results are interdependent in an interesting way. Be sure to review the
definitions (above) of the spaces Cper and Cpw! Before we go on, do the
following problem:

Exercise 2. Let f be 2π-periodic, equal to zero everywhere except at
2nπ, where it equals 1. (i) what are the Fourier coefficients of f? (ii) To what
function do the partial sums sN (x) converge? Is this pointwise convergence?
Uniform? In L2 norm? Are the answers in accordance with theorems 1-3
above?

Decay of Fourier coefficients. The Fourier coefficients of a piecewise
continuous function satisfy the obvious bound:

|an|, |bn| ≤ 1
π

∫ π

π
|f(x)|dx.
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If f is continuous, with piecewise-continuous first-derivative (i.e., f ∈ Cper)
integration by parts and periodicity yield:

an[f ] =
1
n

bn[f ′], bn[f ] = − 1
n

an[f ′],

and hence the bound:

|an|, |bn| ≤ 1/π

n

∫ π

−π
|f ′|(x)dx.

With f is ‘more regular’ (has more continuous derivatives), we may iterate
this procedure and obtain:

f ∈ Ck
per ⇒ |an|, |bn| ≤ 1/π

nk+1

∫ π

−π
|f (k+1)(x)|dx.

To go further, we have to introduce a basic calculation in the ‘L2 theory’.
The symmetric bilinear form in Cpw:

〈f, g〉 =
∫ π

−π
f(x)g(x)dx

has many of the properties of an ‘inner product’ (generalized ‘dot product’)
in a finite-dimensional vector space. One crucial property fails: it is not
‘positive-definite’, but only ‘positive semi-definite’:

||f ||2 := 〈f, f, 〉 = 0 ⇒ f = 0 except possibly on a set of measure 0.

(For an inner product, ||v||2 = 0 ⇒ v = 0). The usual problem that
integration doesn’t see sets of measure zero rears its ugly head. Still, the
analogy is so useful that most people just ignore this, ‘identify functions
coinciding up to sets of measure zero’ without stopping to think about the
consequences (e.g. it makes no sense to talk about the value of a function at
a point), call it an inner product anyway and forge on ahead! In this spirit,
consider the functions:

e0 =
1√
2π

, en =
1√
π

cosnx, fn =
1√
π

sinnx.

It is very easy to see that the en (n ≥ 0) jointly with the fn (n ≥ 1)
define an ‘orthonormal set’ for the L2 inner product. The Fourier coefficients
have the expressions:

a0 =
√

2/π〈f, e0〉, an = (1/
√

π)〈f, en〉, bn = (1/
√

π)〈f, fn〉,

5



while the partial sum sN (x) can be written as:

sN (x) =
N∑

n=0

〈f, en〉en +
N∑

n=1

〈f, fn〉fn,

which looks exactly like the formula for orthogonal projection onto a 2N +1-
dimensional subspace of a vector space with an inner product, in terms of
an orthonormal basis for the subspace!

Encouraged by this, we compute the ‘norm-squared’ of the remainder
using the usual expansion for a quadratic form and find (using orthogonality-
do try this at home! ):

||f − sN ||2 = ||f ||2 −
N∑

n=0

〈f, en〉2 −
N∑

n=1

〈f, fn〉2,

or in terms of Fourier coefficients:

||f ||2 − π[a2
0 +

N∑

n=1

a2
n + b2

n] = ||f − sN ||2 ≥ 0.

This innocent-looking calculation has several important consequences:

1. (‘Bessel’s inequality’ ): the series
∑

n≥0 a2
n and

∑
n≥1 b2

n are conver-
gent:

a2
0 +

∑

n≥1

(a2
n + b2

n) ≤ π−1||f ||2.

2. (‘Parseval’s equality’ ):

sN → f in L2 norm ⇔
∑

n≥0

a2
n +

∑

n≥1

b2
n = π−1||f ||2.

3. (‘Riemann-Lebesgue lemma’ ): |an| and |bn| tend to zero as n tends
to infinity, for any f ∈ Cpw.

This clearly follows from Bessel’s inequality. We can apply this itera-
tively and get:

f ∈ Ck
per ⇒ nk+1 max{|an|, |bn|} → 0,

a stronger decay condition than that seen above.
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Even more, this is all we need to give the proofs of theorems 2 and 3,
assuming theorem 1.

Proof of uniform convergence (Theorem 2). We assume theorem 1. Since,
from theorem 1, we know sN (x) → f(x) pointwise, we may write for each
x ∈ R:

|sN (x)− f(x)| = |
∞∑

n=N+1

an cosnx + bn sinnx| ≤
∞∑

N+1

(|an|+ |bn|).

To estimate the right-hand side, recall we are assuming f is piecewise C1, so
using the notation a′n = an[f ′], b′n = bn[f ′], the right-hand side is bounded
above by:
∞∑

n=N+1

1
n

(|a′n|+|b′n|) ≤
√

2(
∞∑

n=N+1

|a′n|2+|b′n|2)1/2 ≤
√

2(
∞∑

n=N+1

1
n2

)1/2 1√
π
||f ′||1/2,

where we used the Cauchy-Schwarz inequality for convergent series (and
Bessel’s inequality for f ′). From the estimate for the ‘tail’ part of a conver-
gent series given by the integral test:

∞∑

n=N+1

1
n2

≤
∫ ∞

N

1
x2

dx =
1
N

,

we get not only uniform convergence, but also a rate of convergence:

sup
x∈R

|sN (x)− f(x)| ≤ (
2
π
||f ′||)1/2 1√

N
.

Proof of L2 convergence (Theorem 3). We assume Theorem 2. The idea
is to approximate f (which is only piecewise continuous) in L2 norm by
continuous functions, to which Theorem 2 can be applied. We need the
following lemma:

Lemma. If f is piecewise continuous (say, in [a, b]), with piecewise
continuous derivative, then given ε > 0 we may find fε continuous, with
piecewise continuous derivative, so that ||fε − f || < ε.

In lieu of a proof, you are asked in Exercise 3 (below) to show this in a
simple case (which contains the main idea for the general case)

Given ε > 0, use the lemma to find fε in Cper with

||f − fε|| ≤ ε/4
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(L2 norm). Then use Theorem 2 (and the fact that uniform convergence
implies convergence in L2) to find N so that fε is well-approximated in L2

norm by the Nth. partial sum of its Fourier series:

||fε − sN [fε]|| ≤ ε/4.

Finally, we need an estimate for the L2 norm of sN [fε] − sN [f ]. Note that
this is none other than the Nth. partial sum of the Fourier series of fε−f , to
which the identity above (for the L2 norm of the remainder) can be applied,
yielding:

||fε − f − sN [fε − f ]|| ≤ ||fε − f || ≤ ε/4.

Using the triangle inequality, we have:

||sN [fε − f ]|| ≤ 2||fε − f || ≤ ε/2.

Putting everything together, we find:

||f − sN [f ]|| ≤ ||f − fε||+ ||fε− sN [fε]||+ ||sN [fε]− sN [f ]|| ≤ ε

4
+

ε

4
+

ε

2
= ε,

proving L2 convergence (since ε is arbitrary).

Exercise 3. Let f(x) be the piecewise continuous function in [−π, π]:

f(x) = 1 for x ∈ (0, π], f(x) = −1 for x ∈ [−π, 0).

Given h > 0, define fh in [−π, π] by:

fh(x) =
x

h
for |x| ≤ h, fh(x) = f(x) otherwise.

(i) Sketch a graph of f and fh, verifying that fh is continuous; (ii) show
(directly) that ||f − fh|| → 0 as h → 0.

4. Proof of Dirichlet’s theorem.
The first step in the proof is a computation. Given f ∈ Cpw, the Nth.

partial sum of its Fourier series can be written as:

sN (x) =
1
π

∫ π

−π
(
1
2

+
N∑

n=1

cosnx cosny + sin nx sinny)f(y)dy.

Using a standard trigonometric formula, we find an expression for sN (x) in
‘convolution form’:

sN (x) =
∫ π

−π
KN (x− y)f(y)dy,
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with KN (x) (the Dirichlet kernel) defined by:

KN (x) =
1
π

(
1
2

+
N∑

n=1

cos(ny)).

Amazingly, this sum can be computed explicitly! Using the De Moivre-
Laplace formula to represent cos(nx) as a sum of complex exponentials, we
find that KN (x) is (for x 6= 0) the sum of 2N + 1 terms of a geometric
sequence with ratio eix:

KN (x) =
1
2π

N∑

n=−N

enix =
e(N+1)ix + e−Nix

eix − 1
, x 6= 0,

and the last expression can be written as a ratio of sines (multiplying nu-
merator and denominator by e−ix/2, yielding:

KN (x) =
1
π

sin[(N + 1/2)x]
2 sin(x/2)

, for x 6= 0; KN (0) =
1
π

(2N + 1).

Note that it follows directly from the definition that:
∫ π

−π
KN (x)dx = 1,

and by a change of variables:

sN (x) =
∫ π

−π
f(x + y)KN (y)dy.

Fixing x ∈ [−π, π], assume that f is continuous and differentiable at x
(the proof is given only in this case). Then:

sN (x)−f(x) =
∫ π

−π
[f(x+y)−f(x)]KN (y)dy =

1
π

∫ π

−π
gx(y) sin[(N +

1
2
)y]dy,

where:
gx(y) =

f(x + y)− f(x)
2 sin y/2

, y 6= 0; gx(0) = f ′(x).

Note that gx is continuous and 2π-periodic. Now using:

sin(N + 1/2)y = sin(Ny) cos(y/2) + cos(Ny) sin(Ny/2),
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we see that the integral may itself be identified as a sum of Fourier coeffi-
cients! (Namely, for cx : y 7→ gx(y) cos(y/2) and sx : y 7→ gx(y) sin(y/2):)

sN (x) = bN [cx] + aN [sx],

and therefore tends to zero, by the Riemann-Lebesgue lemma.

Exercise 4. [Strauss, p.129] Consider the sequence of functions gn(x)
in [0, 1] defined by: for n even:

gn(x) = 1 in [3/4− 1/n2, 3/4 + 1/n2), gn = 0 elsewhere;

for n odd :

gn(x) = 1 in [1/4− 1/n2, 1/4 + 1/n2) gn = 0 elsewhere.

Show that gn(x) → 0 in L2 norm, but not in the pointwise sense.

Exercise 5. [Strauss, p. 130]. Consider the Fourier sine series of each of
the functions below in [0, π]. Use the theorems above to discuss convergence
of each of them in the uniform, pointwise and L2 senses (in [0, π]). (a)
f(x) = x3; (b) f(x) = πx − x2; (c) f(x) = x2 + 1. Don’t waste your time
actually computing the Fourier coefficients; draw some informative diagrams
instead.

Exercise 6. [Strauss, p. 140] (Wirtinger’s inequality) Show that if f is
a C1 function in [−π, π] and

∫ π
−π f(x)dx = 0, then:

∫ π

−π
|f |2dx ≤

∫ π

−π
|f ′|2(x)dx.

Hint: Use Parseval’s equality!

Later (in class) we will see a remarkable application of this fact.
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